SUPERCONDUCTING TRANSITION EDGE BOLOMETER AND NOISE IN THIN FILMS (open access)

SUPERCONDUCTING TRANSITION EDGE BOLOMETER AND NOISE IN THIN FILMS

We report the development of the composite superconducting transition edge bolometer. The temperature sensitive element is an aluminum strip evaporated onto the sapphire substrate. A bismuth film evaporated on the reverse side of the substrate is used to absorb the submillimeter radiation. The noise limitation of the bolometer is calculated. The fabrication and measured performance are described. The best electrical NEP (noise-equivalent-power) obtained is (1.7 {+-} 0.1) x 10{sup -15} WHz{sup -1/2} at 2 Hz at an operating temperature of 1.27 K. This NEP is within a factor of 2 of the thermal noise limit. The effective absorptivity of the bismuth film is measured to be 0.47 {+-} 0.05, and the corresponding detectivity D* is calculated to be (1.1 {+-} 0.1) x 10{sup 14} cm w{sup -1}Hz{sup 1/2}. Suggestions are made for further improvements in sensitivity. The current-dependent noise in thin metal films at the superconducting transition has been further investigated. The measured noise power spectrum of the tin film on sapphire substrate at the superconducting transition is compared with the cosine transforms of the decay curves obtained from step-function and {delta}-function thermal perturbations. The nature of the noise driving term is found to be a random current flowing inside …
Date: June 1, 1978
Creator: Yeh, Nan-Hsiung
System: The UNT Digital Library
CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE (open access)

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

The potential for contamination of groundwater by organic pollutants leached from in-situ spent shale was studied in a series of laboratory leaching experiments. Both batch-mode and continuous-flow column experiments were conducted to study the leaching phenomenon. Experimental variables included retorting characteristics of spent shale, leaching time, initial quality of leach water, temperature of leach water, and particle size of spent shale. Several unique samples of spent shale were examined during the eaching experiments, including spent shale samples produced during combustion retorting, inert gas retorting, and combustion retorting employing recycle gas. The solid-phase organic carbon content of spent shale samples ranged from 0.2 to 3.9 percent by weight. Leachate derived from the batch-mode experiments was analyzed for organic carbon, organic nitrogen, phenols, and acid/base/netral fractions. The highest levels of organic carbon were detected in leachate derived from spent shale produced during either inert gas retorting or combstion retorting using recycle gas. The highest levels of phenols were observed in leachate obtained from spent shale produced during inert gas retorting; significant levels of organic nitrogen were also detected in various leachate samples. The most predominant organic fraction measured in leachate samples was the neutral fraction associated with spent shale produced during inert …
Date: June 1, 1978
Creator: Amy, Gary L.
System: The UNT Digital Library