Experimental and theoretical studies of picosecond laser interactions with electronic materials-laser ablation (open access)
Gradient Effects on the Fracture of Inhomogeneous Materials (open access)

Gradient Effects on the Fracture of Inhomogeneous Materials

Functionally Graded Materials (FGMs) have a spatial variation in physical properties that can be tailored to meet the needs of a specific application and/or to minimize internal stresses arising from thermal and elastic mismatch. Modeling these materials as inhomogeneous continua allows assessment of the role of the gradient without requiring detailed knowledge of the microstructure. Motivated by the relative difficulty of obtaining analytical solutions to boundary value problems for FGMs, an accurate finite-element code is developed for obtaining numerical planar and axisymmetric linear thermoelastic solutions. In addition an approximate analytical technique for mapping homogeneous-modulus solutions to those for FGMs is assessed and classes of problems to which it applies accurately are identified. The fracture mechanics analysis of FGMs can be characterized by the classic stress intensities, KI and KII, but there has been scarce progress in understanding the role of the modulus gradient in determining fracture initiation and propagation. To address this question, a statistical fracture model is used to correlate near-tip stresses with brittle fracture initiation behavior. This describes the behavior of a material experiencing fracture initiation away from the crack tip. Widely dispersed zones of fracture initiation sites are expected. Finite-length kinks are analyzed to describe the crack …
Date: May 1, 2000
Creator: Becker, Terrence Lee
System: The UNT Digital Library
Object-oriented algorithmic laboratory for ordering sparse matrices (open access)

Object-oriented algorithmic laboratory for ordering sparse matrices

We focus on two known NP-hard problems that have applications in sparse matrix computations: the envelope/wavefront reduction problem and the fill reduction problem. Envelope/wavefront reducing orderings have a wide range of applications including profile and frontal solvers, incomplete factorization preconditioning, graph reordering for cache performance, gene sequencing, and spatial databases. Fill reducing orderings are generally limited to--but an inextricable part of--sparse matrix factorization. Our major contribution to this field is the design of new and improved heuristics for these NP-hard problems and their efficient implementation in a robust, cross-platform, object-oriented software package. In this body of research, we (1) examine current ordering algorithms, analyze their asymptotic complexity, and characterize their behavior in model problems, (2) introduce new and improved algorithms that address deficiencies found in previous heuristics, (3) implement an object-oriented library of these algorithms in a robust, modular fashion without significant loss of efficiency, and (4) extend our algorithms and software to address both generalized and constrained problems. We stress that the major contribution is the algorithms and the implementation; the whole being greater than the sum of its parts. The initial motivation for implementing our algorithms in object-oriented software was to manage the inherent complexity. During our research …
Date: May 1, 2000
Creator: Kumfert, G K
System: The UNT Digital Library
Study of the Axial Anomaly using the {gamma}p {yields} {pi}{sup +}P{pi}{sup 0} n Reaction Near Threshold (open access)

Study of the Axial Anomaly using the {gamma}p {yields} {pi}{sup +}P{pi}{sup 0} n Reaction Near Threshold

This experiment was one of the first photoproduction experiments performed at Jefferson Lab using the CLAS and the Photon Tagger. The event reconstruction and the photon flux determination procedures have been developed and were proven to work well as we can see from the cross section measurement of the {gamma}p {yields} {pi}{sup +}n reaction. The preliminary results at CLAS for this reaction agree very well with previous world data. The analysis procedure has been developed to analyze the double-pion photoproduction. The differential cross sections for the {gamma}p {yields} P{pi}{sup +}{pi}{sup 0}n reaction have been measured with incident photon energies between 1 and 2 GeV. The Chew-Low extrapolation technique was used to extract the associated {gamma}{pi} {yields} {pi}{pi} cross sections from the differential cross sections. The extrapolation procedure of extracting the pole cross section has been explored. F{sup 3{pi}} was obtained from the {gamma}{pi} {yields} {pi}{pi} cross sections. The results show a momentum dependence of the F{sup 3{pi}} amplitude in which they agree with Holstein's calculation. These measurements test fundamental predictions of low energies QCD. Future work on this analysis will help reduce the uncertainty in F{sup 3{pi}}, and extend the measurements to the lower and higher s regions.
Date: May 1, 2000
Creator: Asavapibhop, Burin
System: The UNT Digital Library
Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction (open access)

Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.
Date: May 1, 2000
Creator: Roberts, J.G.
System: The UNT Digital Library
X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals (open access)

X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band …
Date: May 1, 2000
Creator: Hamad, K.S.
System: The UNT Digital Library
Design and construction of a Fourier transform soft x-ray interferometer (open access)

Design and construction of a Fourier transform soft x-ray interferometer

Helium, with its two electrons and one nucleus, is a three-body system. One of the models for investigating correlated electron motion in this system is autoionization, produced via double excitation of the electrons. Predictions about the autoionization spectrum of helium have differed from each other and from preliminary experimental data. However, previous experiments have not been able to distinguish among the theoretical predictions because their energy resolution is not high enough to resolve the narrow linewidths of quasi-forbidden peaks and the resonances that appear in the highest excited states. Consequently, a team of researchers at Lawrence Berkeley National Laboratory have embarked on a project for building a high-resolution Fourier-Transform Soft X-ray (or VUV) interferometer (FTSX) to provide definitive data to answer remaining questions about the autoionization spectrum of helium. The design and construction of this interferometer is described in detail below, including the use of a flexure stage to provide the large path length difference necessary for high resolution measurements, the manufacture of x-ray beamsplitters, a description of the software, and the solution to the problems of stick-slip, vibration, and alignment. Current progress of its development is also described, as well as future goals.
Date: May 10, 2000
Creator: Spring, John A.
System: The UNT Digital Library
Development of high-intensity D-D and D-T neutron sources and neutron filters for medical and industrial applications (open access)

Development of high-intensity D-D and D-T neutron sources and neutron filters for medical and industrial applications

This thesis consists of three main parts. The first one relates to boron neutron capture therapy. It summarizes the guidelines obtained by numerical simulations for the treatment of shallow and deep-seated brain tumors, as well as the results on the design of beam-shaping assemblies to moderate D-D and D-T neutrons to epithermal energies. The second part is about boron neutron capture synovectomy for the treatment of rheumatoid arthritis. Optimal neutron energy for treatment and beam-shaping assembly designs are summarized in this section. The last part is on the development of the sealed neutron generator, including experimental results on the prototype ion source and the prototype accelerator column.
Date: May 10, 2000
Creator: Verbeke, Jérôme Maurice
System: The UNT Digital Library
Synthesis and structure of bivalent ytterbocenes and their coordination chemistry with pi-acceptor ligands (open access)

Synthesis and structure of bivalent ytterbocenes and their coordination chemistry with pi-acceptor ligands

None
Date: May 10, 2000
Creator: Schultz, M.
System: The UNT Digital Library
Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides (open access)

Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of …
Date: May 12, 2000
Creator: Pizarro, Shelly A.
System: The UNT Digital Library
Steric and electronic effects of 1,3-disubstituted cyclopentadienyl ligands on metallocene derivatives of Cerium, Titanium, Manganese, and Iron (open access)

Steric and electronic effects of 1,3-disubstituted cyclopentadienyl ligands on metallocene derivatives of Cerium, Titanium, Manganese, and Iron

Sterically demanding 1,3-disubstituted cyclopentadienyl ligands were used to modify the physical properties of the corresponding metallocenes. Sterically demanding ligands provided kinetic stabilization for trivalent cerium compounds. Tris(di-t-butylcyclopentadienyl)cerium was prepared and anion competition between halides and cyclopentadienyl groups which had complicated synthesis of the tris(cyclopentadienyl)compound was qualitatively examined. Bis(di-t-butylcyclopentadienyl)cerium methyl was prepared and its rate of decomposition, by ligand redistribution, to tris(di-t-butylcyclopentadienyl)cerium was shown to be slower than the corresponding rate for less sterically demanding ligands. Asymmetrically substituted ligands provided a symmetry label for examination of chemical exchange processes. Tris[trimethylsilyl(t-butyl)cyclopentadienyl]cerium was prepared and the rate of interconversion between the C1 and C3 isomers was examined. The enthalpy difference between the two distereomers is 7.0 kJ/mol. The sterically demanding cyclopentadienyl ligands ansa-di-t-butylcyclopentadiene (Me2Si[(Me3C)2C5H3]2), ansa-bis(trimethylsilyl)cyclopentadiene (Me2Si[(Me3Si)2C5H3]2) and tetra-t-butylfulvalene and metallocene derivatives of the ligands were prepared and their structures were examined by single crystal X-ray crystallography. The effect that substituents on the cyclopentadienyl ring have on the pi-electron system of the ligand was examined through interaction between ligand and metal orbitals. A series of 1,3-disubstituted manganocenes was prepared and their electronic states were determined by solid-state magnetic susceptibility, electron paramagnetic resonance, X-ray crystallography, and variable temperature UV-vis spectroscopy. Spin-equilibria in [(Me3C)2C5H3]2Mn and [(Me3C)(Me3Si)C5H3]2Mn …
Date: May 19, 2000
Creator: Sofield, Chadwick Dean
System: The UNT Digital Library
Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon (open access)

Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 {approx} 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, …
Date: May 20, 2000
Creator: Yoo, Jong Hyun
System: The UNT Digital Library
Collisionless relaxation in beam-plasma systems (open access)

Collisionless relaxation in beam-plasma systems

This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It …
Date: May 1, 2001
Creator: Backhaus, Ekaterina Yu.
System: The UNT Digital Library
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique (open access)

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this …
Date: May 1, 2001
Creator: Sutherland, Kevin Jerome
System: The UNT Digital Library
Drift compression and final focus systems for heavy ion inertial fusion (open access)

Drift compression and final focus systems for heavy ion inertial fusion

Longitudinal compression of space-charge dominated beams can be achieved by imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such that it is removed by the longitudinal space-charge repulsion by the time the beam reaches the end of the drift compression section. The transverse focusing lattice should be designed such that all parts of the beam stay approximately matched, while the beam smoothly expands transversely to the larger beam radius needed in the final focus system following drift compression. In this thesis, several drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression. The occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the sensitivity of drift compression to errors in the initial velocity tilt and current profile was studied. These calculations were done using a new computer code that accurately calculates the longitudinal electric field in the space-charge dominated regime.
Date: May 1, 2001
Creator: de Hoon, M.J.L.
System: The UNT Digital Library
Evaluation of chiller modeling approaches and their usability for fault detection (open access)

Evaluation of chiller modeling approaches and their usability for fault detection

Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves …
Date: May 1, 2001
Creator: Sreedharan, Priya
System: The UNT Digital Library
Fast methods for static Hamilton-Jacobi Partial Differential Equations (open access)

Fast methods for static Hamilton-Jacobi Partial Differential Equations

The authors develop a family of fast methods approximating the solution to a wide class of static Hamilton-Jacobi partial differential equations. These partial differential equations are considered in the context of control-theoretic and front-propagation problems. In general, to produce a numerical solution to such a problem, one has to solve a large system of coupled non-linear discretized equations. The techniques use partial information about the characteristic directions to de-couple the system. Previously known fast methods, available for isotropic problems, are discussed in detail. They introduce a family of new Ordered Upwinding Methods (OUM) for general (anisotropic) problems and prove convergence to the viscosity solution of the corresponding Hamilton-Jacobi partial differential equation. The hybrid methods introduced here are based on the analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed and compared to that of several other numerical approaches to these problems. Computational experiments are performed using test problems from control theory, computational geometry and seismology.
Date: May 1, 2001
Creator: Vladimirsky, Alexander Boris
System: The UNT Digital Library
Focus on NIF May 2001 (open access)

Focus on NIF May 2001

The National Ignition Facility, a stadium-size, 192-beam laser, is an essential tool for maintaining the safety and reliability of our nuclear weapons, harnessing fusion energy for future generations, and unlocking the origins of the universe. In the FY2001 Energy and Water Appropriations Act (FPN00-48), Congress appropriated $199.1 million for the continued construction of NIF. Immediately, $130 million became available. After March 31, 2001, $69.1 million was to be made available only after Department of Energy certification to Congress regarding six specific points: (1) recommend an appropriate path forward for the project; (2) certify that all established project and scientific milestones are on schedule and cost; (3) conduct 1st and 2nd quarter project reviews in FY01 and determine the project is on schedule and cost; (4) study alternatives to a 192-beam ignition facility for the stockpile stewardship program (SSP); (5) implement an integrated cost-schedule earned-value project control system; and (6) create a five-year budget plan for the SSP.
Date: May 1, 2001
Creator: Warner, B
System: The UNT Digital Library
Geographical and Temporal Dynamics of Chaetocnema Pulicaria Populations and Their Role in Stewart's Disease of Corn in Iowa (open access)

Geographical and Temporal Dynamics of Chaetocnema Pulicaria Populations and Their Role in Stewart's Disease of Corn in Iowa

This thesis is organized into five chapters. Chapter 1 is the introduction and justification, chapters 2 and 3 are journal papers, chapter 4 is a preliminary analysis of winter environmental variables and their use in forecasting for Stewart's disease of corn, and chapter 5 is general conclusions and discussion. References can be found at the end of each chapter, except chapter 5 and are specific to that chapter.
Date: May 1, 2001
Creator: Esker, Paul David
System: The UNT Digital Library
Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis (open access)

Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm{sub 2} for 40-{micro}m wells. This experimental set-up also can screen solid …
Date: May 1, 2001
Creator: Su, Hui
System: The UNT Digital Library
Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices (open access)

Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn,Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.
Date: May 1, 2001
Creator: Petersen, Michael David
System: The UNT Digital Library
Properties of Group Five and Group Seven transactinium elements (open access)

Properties of Group Five and Group Seven transactinium elements

The detection and positive identification of the short-lived, low cross section isotopes used in the chemical studies of the heaviest elements are usually accomplished by measuring their alpha-decay, thus the nuclear properties of the heaviest elements must be examined simultaneously with their chemical properties. The isotopes 224 Pa and 266,267 Bh have been studied extensively as an integral part of the investigation of the heaviest members of the groups five and seven of the periodic table. The half-life of 224 Pa was determined to be 855 plus/minus19 ms by measuring its alpha-decay using our rotating wheel, solid state detector system at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Protactinium was produced by bombardment of a bismuth target. New neutron rich isotopes, 267 Bh and 266 Bh, were produced in bombardments of a 249 Bk target and their decay was observed using the rotating wheel system. The 266 Bh that was produced decays with a half-life of approximately 1 s by emission of alpha particles with an average energy of 9.25 plus/minus 0.03 MeV. 267 Bh was observed to decay with a 17 s half-life by emission of alpha-particles with an average energy of 8.83 plus/minus 0.03 MeV. The chemical behavior …
Date: May 1, 2001
Creator: Wilk, Philip A.
System: The UNT Digital Library
Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors (open access)

Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very …
Date: May 1, 2001
Creator: Segre, Gino P.
System: The UNT Digital Library
Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214 (open access)

Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H{parallel}c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. …
Date: May 1, 2001
Creator: Huh, Yung Moo
System: The UNT Digital Library