Collisionless relaxation in beam-plasma systems (open access)

Collisionless relaxation in beam-plasma systems

This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It …
Date: May 1, 2001
Creator: Backhaus, Ekaterina Yu.
System: The UNT Digital Library
X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis (open access)

X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis

Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy (XANES), Mn Kb X-ray emission spectroscopy (XES), and vibrational spectroscopy. A more detailed understanding was obtained of the influence of nuclearity, overall structure, oxidation state, and ligand environment of the Mn atoms on the spectra from these methods. This refined understanding is necessary for improving the interpretation of spectra of the OEC. Mn XANES and Kb XES were used to study a di-(mu)-oxo and a mono-(mu)-oxo di-nuclear Mn compound in the (III,III), (III,IV), and (IV,IV) oxidation states. XANES spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 - 1.8 eV for ligand-environment changes. The shifts observed for Mn XES spectra were approximately 0.21 eV for oxidation state-changes and only approximately 0.04 eV for ligand-environment changes. This indicates that Mn Kb XES i s more sensitive to the oxidation state and less sensitive to the ligand environment of the Mn atoms than XANES. These complimentary methods provide information about the oxidation state and the ligand environment of Mn atoms in model compounds and biological systems. A versatile spectroelectrochemical apparatus was designed to aid the interpretation …
Date: May 16, 2001
Creator: Visser, Hendrik
System: The UNT Digital Library
Properties of Group Five and Group Seven transactinium elements (open access)

Properties of Group Five and Group Seven transactinium elements

The detection and positive identification of the short-lived, low cross section isotopes used in the chemical studies of the heaviest elements are usually accomplished by measuring their alpha-decay, thus the nuclear properties of the heaviest elements must be examined simultaneously with their chemical properties. The isotopes 224 Pa and 266,267 Bh have been studied extensively as an integral part of the investigation of the heaviest members of the groups five and seven of the periodic table. The half-life of 224 Pa was determined to be 855 plus/minus19 ms by measuring its alpha-decay using our rotating wheel, solid state detector system at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Protactinium was produced by bombardment of a bismuth target. New neutron rich isotopes, 267 Bh and 266 Bh, were produced in bombardments of a 249 Bk target and their decay was observed using the rotating wheel system. The 266 Bh that was produced decays with a half-life of approximately 1 s by emission of alpha particles with an average energy of 9.25 plus/minus 0.03 MeV. 267 Bh was observed to decay with a 17 s half-life by emission of alpha-particles with an average energy of 8.83 plus/minus 0.03 MeV. The chemical behavior …
Date: May 1, 2001
Creator: Wilk, Philip A.
System: The UNT Digital Library
Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors (open access)

Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very …
Date: May 1, 2001
Creator: Segre, Gino P.
System: The UNT Digital Library
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique (open access)

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this …
Date: May 1, 2001
Creator: Sutherland, Kevin Jerome
System: The UNT Digital Library
Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214 (open access)

Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H{parallel}c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. …
Date: May 1, 2001
Creator: Huh, Yung Moo
System: The UNT Digital Library
Liquid phase epitaxial growth and characterization of germanium far infrared blocked impurity band detectors (open access)

Liquid phase epitaxial growth and characterization of germanium far infrared blocked impurity band detectors

Germanium Blocked Impurity Band (BIB) detectors require a high purity blocking layer (< 10{sup 13} cm{sup -3}) approximately 1 mm thick grown on a heavily doped active layer ({approx} 10{sup 16} cm{sup -3}) approximately 20 mm thick. Epilayers were grown using liquid phase epitaxy (LPE) of germanium out of lead solution. The effects of the crystallographic orientation of the germanium substrate on LPE growth modes were explored. Growth was studied on substrates oriented by Laue x-ray diffraction between 0.02{sup o} and 10{sup o} from the {l_brace}111{r_brace} toward the {l_brace}100{r_brace}. Terrace growth was observed, with increasing terrace height for larger misorientation angles. It was found that the purity of the blocking layer was limited by the presence of phosphorus in the lead solvent. Unintentionally doped Ge layers contained {approx}10{sup 15} cm{sup -3} phosphorus as determined by Hall effect measurements and Photothermal Ionization Spectroscopy (PTIS). Lead purification by vacuum distillation and dilution reduced the phosphorus concentration in the layers to {approx} 10{sup 14} cm{sup -3} but further reduction was not observed with successive distillation runs. The graphite distillation and growth components as an additional phosphorus source cannot be ruled out. Antimony ({approx}10{sup 16} cm{sup -3}) was used as a dopant for the …
Date: May 12, 2001
Creator: Bandaru, Jordana
System: The UNT Digital Library
Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis (open access)

Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm{sub 2} for 40-{micro}m wells. This experimental set-up also can screen solid …
Date: May 1, 2001
Creator: Su, Hui
System: The UNT Digital Library
Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis (open access)

Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm{sup 2} for 40-{micro}m wells. This experimental set-up also can screen …
Date: May 25, 2001
Creator: Su, Hui
System: The UNT Digital Library
Drift compression and final focus systems for heavy ion inertial fusion (open access)

Drift compression and final focus systems for heavy ion inertial fusion

Longitudinal compression of space-charge dominated beams can be achieved by imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such that it is removed by the longitudinal space-charge repulsion by the time the beam reaches the end of the drift compression section. The transverse focusing lattice should be designed such that all parts of the beam stay approximately matched, while the beam smoothly expands transversely to the larger beam radius needed in the final focus system following drift compression. In this thesis, several drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression. The occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the sensitivity of drift compression to errors in the initial velocity tilt and current profile was studied. These calculations were done using a new computer code that accurately calculates the longitudinal electric field in the space-charge dominated regime.
Date: May 1, 2001
Creator: de Hoon, M.J.L.
System: The UNT Digital Library
The VRFurnace: A Virtual Reality Application for Energy System Data Analysis (open access)

The VRFurnace: A Virtual Reality Application for Energy System Data Analysis

This paper presents the Virtual Reality Furnace (VRFurnace) application, an interactive 3-D visualization platform for pulverized coal furnace analysis. The VRFurnace is a versatile toolkit where a variety of different CFD data sets related to pulverized coal furnaces can be studied interactively. The toolkit combines standard CFD analysis techniques with tools that more effectively utilize the 3-D capabilities of a virtual environment. Interaction with data is achieved through a dynamic instructional menu system. The application has been designed for use in a projection-based system which allows engineers, management, and operators to see and interact with the data at the same time. Future developments are discussed and will include the ability to combine multiple power plant components into a single application, allow remote collaboration between different virtual environments, and allow users to make changes to a flow field and see the results of these changes as they are made creating a complete virtual power plant.
Date: May 1, 2001
Creator: Johnson, Peter Eric
System: The UNT Digital Library
Geographical and Temporal Dynamics of Chaetocnema Pulicaria Populations and Their Role in Stewart's Disease of Corn in Iowa (open access)

Geographical and Temporal Dynamics of Chaetocnema Pulicaria Populations and Their Role in Stewart's Disease of Corn in Iowa

This thesis is organized into five chapters. Chapter 1 is the introduction and justification, chapters 2 and 3 are journal papers, chapter 4 is a preliminary analysis of winter environmental variables and their use in forecasting for Stewart's disease of corn, and chapter 5 is general conclusions and discussion. References can be found at the end of each chapter, except chapter 5 and are specific to that chapter.
Date: May 1, 2001
Creator: Esker, Paul David
System: The UNT Digital Library
Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices (open access)

Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn,Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.
Date: May 1, 2001
Creator: Petersen, Michael David
System: The UNT Digital Library
Geographical and Temporal Dynamics of Chaetocnema Pulicaria and Their Role in Stewart's Disease of Corn in Iowa (open access)

Geographical and Temporal Dynamics of Chaetocnema Pulicaria and Their Role in Stewart's Disease of Corn in Iowa

This thesis investigated the biology and importance of the corn flea beetle vector and its role in the Stewart's disease of corn pathosystem. This was accomplished by determining the number of corn flea beetle generations that occur in Iowa and by quantifying the proportions of those populations found to be infested with the causal agent of Stewart's disease, pantoea stewartii. In addition, a preliminary study was conducted to determine how soil temperature was influenced by air temperature and how this may be applied to forecasting for Stewart's disease of corn. Research using yellow sticky cards and sweep netting demonstrated that there are overwintering, first, and second field generations of the corn flea beetle in Iowa. It was also observed that there was a period during June of both 1999 and 2000 when corn flea beetles were not found, which is important new management information. This research has also demonstrated that the incidence of P. stewartii-infested corn flea beetles can be monitored by ELISA testing and that the incidence fluctuates greatly throughout the corn growing season. The initial level of inoculum (P. stewartii-infested corn flea beetles in the adult overwintering generation) does not remain static during the spring as was previously …
Date: May 27, 2001
Creator: Esker, Paul David
System: The UNT Digital Library
Fast methods for static Hamilton-Jacobi Partial Differential Equations (open access)

Fast methods for static Hamilton-Jacobi Partial Differential Equations

The authors develop a family of fast methods approximating the solution to a wide class of static Hamilton-Jacobi partial differential equations. These partial differential equations are considered in the context of control-theoretic and front-propagation problems. In general, to produce a numerical solution to such a problem, one has to solve a large system of coupled non-linear discretized equations. The techniques use partial information about the characteristic directions to de-couple the system. Previously known fast methods, available for isotropic problems, are discussed in detail. They introduce a family of new Ordered Upwinding Methods (OUM) for general (anisotropic) problems and prove convergence to the viscosity solution of the corresponding Hamilton-Jacobi partial differential equation. The hybrid methods introduced here are based on the analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed and compared to that of several other numerical approaches to these problems. Computational experiments are performed using test problems from control theory, computational geometry and seismology.
Date: May 1, 2001
Creator: Vladimirsky, Alexander Boris
System: The UNT Digital Library
Evaluation of chiller modeling approaches and their usability for fault detection (open access)

Evaluation of chiller modeling approaches and their usability for fault detection

Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves …
Date: May 1, 2001
Creator: Sreedharan, Priya
System: The UNT Digital Library
Focus on NIF May 2001 (open access)

Focus on NIF May 2001

The National Ignition Facility, a stadium-size, 192-beam laser, is an essential tool for maintaining the safety and reliability of our nuclear weapons, harnessing fusion energy for future generations, and unlocking the origins of the universe. In the FY2001 Energy and Water Appropriations Act (FPN00-48), Congress appropriated $199.1 million for the continued construction of NIF. Immediately, $130 million became available. After March 31, 2001, $69.1 million was to be made available only after Department of Energy certification to Congress regarding six specific points: (1) recommend an appropriate path forward for the project; (2) certify that all established project and scientific milestones are on schedule and cost; (3) conduct 1st and 2nd quarter project reviews in FY01 and determine the project is on schedule and cost; (4) study alternatives to a 192-beam ignition facility for the stockpile stewardship program (SSP); (5) implement an integrated cost-schedule earned-value project control system; and (6) create a five-year budget plan for the SSP.
Date: May 1, 2001
Creator: Warner, B
System: The UNT Digital Library