The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors (open access)

The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, …
Date: May 1997
Creator: Cherry, H. B. B.
System: The UNT Digital Library
A disoriented chiral condensate search at the Fermilab Tevatron (open access)

A disoriented chiral condensate search at the Fermilab Tevatron

MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of {open_quotes}disoriented vacuum{close_quotes} might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity {eta} {approx} 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.
Date: May 1, 1997
Creator: Convery, M.E.
System: The UNT Digital Library
Fabrication and electronic transport studies of single nanocrystal systems (open access)

Fabrication and electronic transport studies of single nanocrystal systems

Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography …
Date: May 1, 1997
Creator: Klein, D.L.
System: The UNT Digital Library
Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids (open access)

Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.
Date: May 1, 1997
Creator: Morgen, Michael M.
System: The UNT Digital Library
High transition-temperature SQUID magnetometers and practical applications (open access)

High transition-temperature SQUID magnetometers and practical applications

The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO{sub 3}-YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz{sup {minus}1/2} at 1 Hz and 8.5 fT Hz{sup {minus}1/2} at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz{sup {minus}1/2} at 1 Hz and 18 fT Hz{sup {minus}1/2} at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and …
Date: May 1, 1997
Creator: Dantsker, E.
System: The UNT Digital Library
A measurement of the tau Michel parameters at SLD (open access)

A measurement of the tau Michel parameters at SLD

This thesis presents a measurement of the tau Michel parameters. This measurement utilizes the highly polarized SLC electron beam to extract these quantities directly from the measured tau decay spectra using the 1993--95 SLD sample of 4,528 tau pair events. The results are {rho}{sup e} = 0.71 {+-} 0.14 {+-} 0.05, {xi}{sup e} = 1.16 {+-} 0.52 {+-} 0.06, and ({xi}{delta}){sup e} = 0.85 {+-} 0.43 {+-} 0.08 for tau decays to electrons and {rho}{sup {mu}} = 0.54 {+-} 0.28 {sup {minus}} 0.14, {eta}{sup {mu}} = {minus}0.59 {+-} 0.82 {+-} 0.45, {xi}{sup {mu}} = 0.75 {+-} 0.50 {+-} 0.14, and ({xi}{delta}){sup {mu}} = 0.82 {+-} 0.32 {+-} 0.07 for tau decays to muons. Combining all leptonic tau decays gives {rho} = 0.72 {+-} 0.09 {+-} 0.03, {xi} = 1.05 {+-} 0.35 {+-} 0.04, and {Xi}{delta} = 0.88 {+-} 0.27 {+-} 0.04. These results agree well with the current world average and the Standard Model.
Date: May 1, 1997
Creator: Quigley, J.
System: The UNT Digital Library
Metal contacts on ZnSe and GaN (open access)

Metal contacts on ZnSe and GaN

Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.
Date: May 1, 1997
Creator: Duxstad, K.J.
System: The UNT Digital Library
Near-ground cooling efficacies of trees and high-albedo surfaces (open access)

Near-ground cooling efficacies of trees and high-albedo surfaces

Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequently-proposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object`s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by.
Date: May 1, 1997
Creator: Levinson, R.M.
System: The UNT Digital Library
Near-ground cooling efficacies of trees and high-albedo surfaces (open access)

Near-ground cooling efficacies of trees and high-albedo surfaces

None
Date: May 1, 1997
Creator: Levinson, R.M.
System: The UNT Digital Library
Production rates of strange vector mesons at the Z{sup 0} resonance (open access)

Production rates of strange vector mesons at the Z{sup 0} resonance

This dissertation presents a study of strange vector meson production, {open_quotes}leading particle{close_quotes} effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z{sup 0}. The measurements were performed in e{sup +}e{sup -} collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of {phi} and K*{sup 0} and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K*{sup 0} production is studied separately in these samples, and the results show evidence for the {open_quotes}leading particle{close_quotes} effect. The difference between K*{sup 0} production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation.
Date: May 1997
Creator: Dima, M. O.
System: The UNT Digital Library
Quantum groups, roots of unity and particles on quantized Anti-de Sitter space (open access)

Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

Quantum groups in general and the quantum Anti-de Sitter group U{sub q}(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin {ge} 1, {open_quotes}naive{close_quotes} representations are unitarizable only after factoring out a subspace of {open_quotes}pure gauges{close_quotes}, as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of U{sub q}(g), which plays the role of a BRST operator in the case of U{sub q}(so(2,3)) at roots of unity, for any spin {ge} 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere …
Date: May 23, 1997
Creator: Steinacker, H.
System: The UNT Digital Library
Spin polarization and magnetic dichroism in core-level photoemission from ferromagnets (open access)

Spin polarization and magnetic dichroism in core-level photoemission from ferromagnets

In this thesis we present a theoretical investigation of angle- and spin-resolved core-level photoemission from ferromagnetic Fe and Ni. We also consider magneto-dichroic effects due to reversal of the photon helicity or reversal of the sample magnetization direction. In chapter 1, we provide a brief outline of the history of photoemission, and show how it has played an important role in the development of modern physics. We then review the basic elements of the theory of core-level photoemission, and discuss the validity of the some of the commonly-used approximations. In chapter 2, we present a one-electron theory to calculate spin- and angle-resolved photoemission spectra for an arbitrary photon polarization. The Hamiltonian includes both spin-orbit and exchange interactions. As test cases for the theory, we calculate the spin polarization and magnetic dichroism for the Fe 2p core level, and find that agreement with experiment is very good.
Date: May 1, 1997
Creator: Menchero, J.G.
System: The UNT Digital Library
Supersymmetry breaking in superstring theory by Gaugino condensation and its phenomenology (open access)

Supersymmetry breaking in superstring theory by Gaugino condensation and its phenomenology

Weakly-coupled heterotic string is known to have problems of dilaton/moduli stabilization, supersymmetry breaking (by hidden-sector gaugino condensation), gauge coupling unification, QCD axion, as well as cosmological problems involving dilaton/moduli and axion. The author studies these problems by adopting the point of view that they arise mostly due to limited calculational power, little knowledge of the full vacuum structure, and an inappropriate treatment of gaugino condensation. It turns out that these problems can be solved or are much less severe after a more consistent and complete treatment. There are two kinds of non-perturbative effects in the construction of string effective field theory: the field-theoretical non-perturbative effects of gaugino condensation (with an important constraint ignored in the past) and the stringy nonperturbative effects conjectured by S. Shenker, which are best described using the linear multiplet formalism. Stringy non-perturbative corrections to the Kaehler potential are invoked to stabilize the dilaton at a value compatible with a weak coupling regime. Modular invariance is ensured through the Green-Schwarz counterterm and string threshold corrections which, together with hidden matter condensation, lead to moduli stabilization at the self-dual point where the vev`s of moduli`s F components vanish. In the vacuum, supersymmetry is broken at a realistic scale …
Date: May 1, 1997
Creator: Wu, Yi-Yen
System: The UNT Digital Library
Topics in conformal invariance and generalized sigma models (open access)

Topics in conformal invariance and generalized sigma models

This thesis consists of two different parts, having in common the fact that in both, conformal invariance plays a central role. In the first part, the author derives conditions for conformal invariance, in the large N limit, and for the existence of an infinite number of commuting classical conserved quantities, in the Generalized Thirring Model. The treatment uses the bosonized version of the model. Two different approaches are used to derive conditions for conformal invariance: the background field method and the Hamiltonian method based on an operator algebra, and the agreement between them is established. The author constructs two infinite sets of non-local conserved charges, by specifying either periodic or open boundary conditions, and he finds the Poisson Bracket algebra satisfied by them. A free field representation of the algebra satisfied by the relevant dynamical variables of the model is also presented, and the structure of the stress tensor in terms of free fields (and free currents) is studied in detail. In the second part, the author proposes a new approach for deriving the string field equations from a general sigma model on the world sheet. This approach leads to an equation which combines some of the attractive features of …
Date: May 1, 1997
Creator: Bernardo, L.M.
System: The UNT Digital Library
Topics in N = 1 supergravity in four dimensions and superstring effective field theories beyond tree-level (open access)

Topics in N = 1 supergravity in four dimensions and superstring effective field theories beyond tree-level

In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. …
Date: May 1, 1997
Creator: Saririan, K.
System: The UNT Digital Library