Experimental Program for Development and Evaluation of Nondestructive Assay Techniques for Plutonium Holdup (open access)

Experimental Program for Development and Evaluation of Nondestructive Assay Techniques for Plutonium Holdup

An outline is presented for an experimental program to develop and evaluate nondestructive assay techniques applicable to holdup measurement in plutonium-containing fuel fabrication facilities. The current state-of-the-art in holdup measurements is reviewed. Various aspects of the fuel fabrication process and the fabrication facility are considered for their potential impact on holdup measurements. The measurement techniques considered are those using gamma-ray counting, neutron counting, and temperature measurement. The advantages and disadvantages of each technique are discussed. Potential difficulties in applying the techniques to holdup measurement are identified. Experiments are proposed to determine the effects of such problems as variation in sample thickness, in sample distribution, and in background radiation. These experiments are also directed toward identification of techniques most appropriate to various applications. Also proposed are experiments to quantify the uncertainties expected for each measurement.
Date: May 1977
Creator: Brumbach, S. B.
System: The UNT Digital Library
Scintillation Spectrometer System for Measuring Fast-Neutron Spectra in Beam Geometry (open access)

Scintillation Spectrometer System for Measuring Fast-Neutron Spectra in Beam Geometry

A high-energy liquid-organic scintillation spectrometer system is described. This spectrometer was developed to measure neutron spectra in extracted beams from zero-power fast reactors. The highly efficient NE-213 scintillation solution was used as the neutron detection medium. Identification and removal of gamma-ray-induced events was accomplished using electronic pulse shape discrimination. Instrumentation used to process the discrete pulses stemming from neutron and gamma-ray interactions, within the scintillation solution, is described in detail. Evaluation of the system's performance is discussed for a gamma-ray discrimination ratio of nominally 1000:1, a total count-rate of 3000 cps, and a dynamic range corresponding to neutron energies from 1 to 10 MeV. Operation above 10 MeV is certainly possible. However, since the neutron flux above 10 MeV was negligible in the radiation fields of interest in this work, the operating characteristics of the spectrometer were not evaluated above 10 MeV. Neutron spectra are reported for extracted beam measurements made on ZPPR assembly 4, phase 2.
Date: May 1977
Creator: Simons, G. G.; Larson, J. M. & Reynolds, R. S.
System: The UNT Digital Library