Simulation of the LHC BRAN luminosity monitor for high luminosity interaction regions (open access)

Simulation of the LHC BRAN luminosity monitor for high luminosity interaction regions

The BRAN (Beam RAte of Neutrals) detector monitors the collision rates in the high luminosity interaction regions of LHC (ATLAS and CMS). This Argon gas ionization detector measures the forward neutral particles from collisions at the interaction point. To predict and improve the understanding of the detector's performance, we produced a detailed model of the detector and its surroundings in Fluka. In this paper, we present the model and results of our simulations including the detectors estimated response to interactions for beam energies of 3.5, 5, and 7 TeV.
Date: May 23, 2010
Creator: Miyamoto, R.; Matis, H.; Ratti, A.; Stiller, J. & White, S.M.
Object Type: Article
System: The UNT Digital Library
Simulations for preliminary design of a multi-cathode DC electron gun for eRHIC (open access)

Simulations for preliminary design of a multi-cathode DC electron gun for eRHIC

The proposed electron ion collider, eRHIC, requires a large average polarized electron current of 50 mA, which is more than 20 times higher than the present experimental output of a single, highly polarized electron source, based on cesiated super-lattice GaAs. To meet eRHIC's requirement for current, we designed a multicathode DC electron gun for injection. The twenty-four GaAs cathodes emit electrons in sequence, then are combined on axis by a rotating field (or 'funnelled'). In addition to its ultra-high vacuum requirements, the multicathode DC electron gun will place high demand on the electric field symmetry, the magnetic field shielding, and on preventing arcing. In this paper, we discuss our results from a 3D simulation of the latest model for this gun. The findings will guide the actual design in future. Their preliminary design of a multi-cathode electron source for eRHIC demonstrated tolerable fields and reasonable results in both field and particle simulations.
Date: May 23, 2010
Creator: Wu, Q.; Ben-Zvi, Ilan; Chang, X. & Skaritka, J.
Object Type: Article
System: The UNT Digital Library
Single-pass beam measurements for the verification of the LHC magnetic model (open access)

Single-pass beam measurements for the verification of the LHC magnetic model

During the 2009 LHC injection tests, the polarities and effects of specific quadrupole and higher-order magnetic circuits were investigated. A set of magnet circuits had been selected for detailed investigation based on a number of criteria. On or off-momentum difference trajectories launched via appropriate orbit correctors for varying strength settings of the magnet circuits under study - e.g. main, trim and skew quadrupoles; sextupole families and spool piece correctors; skew sextupoles, octupoles - were compared with predictions from various optics models. These comparisons allowed confirming or updating the relative polarity conventions used in the optics model and the accelerator control system, as well as verifying the correct powering and assignment of magnet families. Results from measurements in several LHC sectors are presented.
Date: May 23, 2010
Creator: Calaga, R.; Giovannozzi, M.; Redaelli, S.; Sun, Y.; Tomas, R.; Venturini-Delsolaro, W. et al.
Object Type: Article
System: The UNT Digital Library
Small gap magnet prototype measurements for eRHIC (open access)

Small gap magnet prototype measurements for eRHIC

In this paper we present the design and prototype measurement of small gap (5mm to 10 mm aperture) dipole and quadrupole for the future high energy ERL (Energy Recovery Linac). The small gap magnets have the potential of largely reducing the cost of the future electron-ion collider project, eRHIC, which requires a 10GeV to 30 GeV ERL with up to 6 energy recovery passes (3.8 km each pass). We also studied the sensitivity of the energy recovery pass and the alignment error in this small magnets structure and countermeasure methods.
Date: May 23, 2010
Creator: Hao, Y.; He, P.; Jain, A.; Mahler, G.; Meng, W.; Tuozzolo, J. et al.
Object Type: Article
System: The UNT Digital Library
Spin dynamics simulations at AGS (open access)

Spin dynamics simulations at AGS

To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.
Date: May 23, 2010
Creator: Huang, H.; MacKay, W. W.; Meot, F. & Roser, T.
Object Type: Article
System: The UNT Digital Library
Spin tune dependence on closed orbit in RHIC (open access)

Spin tune dependence on closed orbit in RHIC

Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.
Date: May 23, 2010
Creator: Ptitsyn, V.; Bai, M. & Roser, T.
Object Type: Article
System: The UNT Digital Library
STATUS OF THE RHIC HEAD-ON BEAM-BEAM COMPENSATION PROJECT (open access)

STATUS OF THE RHIC HEAD-ON BEAM-BEAM COMPENSATION PROJECT

In polarized proton operation the luminosity of RHIC is limited by the head-on beam-beam effect, and methods that mitigate the effect will result in higher peak and average luminosities. Two electron lenses, one for each ring, are being constructed to partially compensate the head-on beam-beam effect in the two rings. An electron lens consists of a low energy electron beam that creates the same amplitude dependent transverse kick as the proton beam. We discuss design considerations and present the main parameters.
Date: May 23, 2010
Creator: Fischer, W.; Luo, Y.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D. et al.
Object Type: Article
System: The UNT Digital Library
Studies of Beam Dynamics for eRHIC (open access)

Studies of Beam Dynamics for eRHIC

We present our studies on various aspects of the beam dynamics in 'racetrack' design of the first stage electron-ion collider at RHIC (eRHIC), including transverse beam break up instabilities, energy loss due to wakefields, electron beam emittance growth and energy loss due to synchrotron radiation, electron beam losses due to Touschek effects and residue gas scattering, beam-beam effects at the interaction region and emittance growth of ion beam due to electron bunch to bunch noises. For all effects considered above, no showstopper has been found.
Date: May 23, 2010
Creator: Wang, G.; Blaskiewicz, M.; Fedotov, A.; Hao, Y.; Kewisch, J.; Litvinenko, V. et al.
Object Type: Article
System: The UNT Digital Library
Study of beam-beam effects in eRHIC (open access)

Study of beam-beam effects in eRHIC

Beam-beam effects in eRHIC have a number of unique features, which distinguish them from both hadron and lepton colliders. Due to beam-beam interaction, both electron and hadron beams would suffer quality degradation or beam loss from without proper treatments. Those features need novel study and dedicate countermeasures. We study the beam dynamics and resulting luminosity of the characteristics, including mismatch, disruption and pinch effects on electron beam, in additional to their consequences on the opposing beam as a wake field and other incoherent effects of hadron beam. We also carry out countermeasures to prevent beam quality degrade and coherent instability.
Date: May 23, 2010
Creator: Hao, Y.; Litvinenko, V. & Ptitsyn, V.
Object Type: Article
System: The UNT Digital Library
A Superconducting Magnet Upgrade of the ATF2 Final Focus (open access)

A Superconducting Magnet Upgrade of the ATF2 Final Focus

The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R and D FF prototype under construction at BNL.
Date: May 23, 2010
Creator: Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A. et al.
Object Type: Article
System: The UNT Digital Library
The Transverse Linac Optics Design in Multi-pass ERL (open access)

The Transverse Linac Optics Design in Multi-pass ERL

In this paper, we analyzed the linac optics design requirement for a multi-pass energy recovery linac (ERL) for arbitrary number of linacs. A set of general formula of constrains for the 2-D transverse matrix is derived to ensure design optics acceptance matching throughout the entire accelerating and decelerating process. Meanwhile, the rest free parameters can be adjusted for fulfilling other requirements or optimization purpose. As an example, we design the linac optics for the future MeRHIC (Medium Energy eRHIC) project and show the optimization for small {beta} function.
Date: May 23, 2010
Creator: Hao, Y.; Kewisch, J.; Litvinenko,V.; Pozdeyev, E.; Ptitsyn, V.; Trbojevic, D. et al.
Object Type: Article
System: The UNT Digital Library
Update on the Innovative Carbon/Proton Non-Scaling FFAG Isocentric gantries for Cancer Therapy (open access)

Update on the Innovative Carbon/Proton Non-Scaling FFAG Isocentric gantries for Cancer Therapy

There is a dramatic increase in numbers of proton/carbon cancer therapy facilities in recent years due to a clear advantage with respect to the other radiation therapy treatments. Cost of the ion cancer therapy is still to high for most of the hospitals and a dominating part comes from the delivery systems. We had previously presented design of the carbon and proton isocentric gantries using the principle of the non-scaling alternating gradient fixed field magnets (NS-FFAG), where a size and weight of the magnets should be dramatically reduced. The weight of the transport elements of the carbon isocentric gantry is estimated to be 1.5 tons compared to the 130 tons a weight of the Heidelberg gantry. The similar claim of 500 kg comes for the transport elements of the proton permanent magnet gantry. We present an update on these designs.
Date: May 23, 2010
Creator: Trbojevic, D.
Object Type: Article
System: The UNT Digital Library
Versatile device for in-situ discharge cleaning and multiple coatings of long, small diameter tubes (open access)

Versatile device for in-situ discharge cleaning and multiple coatings of long, small diameter tubes

Electron clouds, which can limit machine performance, have been observed in many accelerators including RHIC at BNL. Additional concern for the RHIC machine, whose vacuum chamber is made from relatively high resistivity 316LN stainless steel, is high wall resistivity that can result in unacceptably high ohmic heating for superconducting magnets. The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a TiN or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We have been developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprising of staged magnetrons mounted on a mobile mole for deposition of about 5 ?m of Cu followed by about 0.1 ?m of a-C. As a first step, a 15-cm Cu cathode magnetron was designed, fabricated, and 30-cm long samples of the RHIC pipe have been coated with 2 ?m to 5.6 ?m of copper. Deposition rates of up to 92 A/sec with an average coating rate of 30 A/sec were measured. Effects on RF resistivity is also to be measured.
Date: May 23, 2010
Creator: Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Erickson, M.; Liaw, C. J. et al.
Object Type: Article
System: The UNT Digital Library
Algorithm for Unfolding Current from Faraday Rotation Measurement (open access)

Algorithm for Unfolding Current from Faraday Rotation Measurement

Various methods are described to translate Faraday rotation measurements into a useful representation of the dynamic current under investigation[1]. For some experiments, simply counting the “fringes” up to the turnaround point in the recorded Faraday rotation signal is sufficient in determining the peak current within some allowable fringe uncertainty. For many other experiments, a higher demand for unfolding the entire dynamic current profile is required. In such cases, investigators often rely extensively on user interaction on the Faraday rotation data by visually observing the data and making logical decisions on what appears to be turnaround points and/or inflections in the signal. After determining extrema, inflection points, and locations, a piece-wise, ΔI/Δt, representation of the current may be revealed with the proviso of having a reliable Verdet constant of the Faraday fiber or medium and time location for each occurring fringe. In this paper, a unique software program is reported which automatically decodes the Faraday rotation signal into a time-dependent current representation. System parameters such as the Faraday fiber’s Verdet constant and number of loops in the sensor are the only user-interface inputs. The central aspect of the algorithm utilizes a short-time Fourier transform (STFT) which reveals much of the Faraday …
Date: May 23, 2008
Creator: Mitchell, Stephen E.
Object Type: Article
System: The UNT Digital Library
Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations (open access)

Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation δΒ. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of δΒ. Here, we analytically compute the pressure anisoptropy, anisoptropy, pll, p⊥ ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.
Date: May 23, 2008
Creator: Boozer, H.E. Mynick and A.H.
Object Type: Report
System: The UNT Digital Library
CLOSURE OF HLW TANKS FORMULATION FOR A COOLING COIL GROUT (open access)

CLOSURE OF HLW TANKS FORMULATION FOR A COOLING COIL GROUT

The Tank Closure and Technology Development Groups are developing a strategy for closing the High Level Waste (HLW) tanks at the Savannah River Site (SRS). Two Type IV tanks, 17 and 20 in the F-Area Tank Farm, have been successfully filled with grout. Type IV tanks at SRS do not contain cooling coils; on the other hand, the majority of the tanks (Type I, II, III and IIIA) do contain cooling coils. The current concept for closing tanks equipped with cooling coils is to pump grout into the cooling coils to prevent pathways for infiltrating water after tank closure. This task addresses the use of grout to fill intact cooling coils present in most of the remaining HLW tanks on Site. The overall task was divided into two phases. Phase 1 focused on the development of a grout formulation (mix design) suitable for filling the HLW tank cooling coils. Phase 2 will be a large-scale demonstration of the filling of simulated cooling coils under field conditions using the cooling coil grout mix design recommended from Phase 1. This report summarizes the results of Phase 1, the development of the cooling coil grout formulation. A grout formulation is recommended for the …
Date: May 23, 2008
Creator: Harbour, J; Vickie Williams, V & Erich Hansen, E
Object Type: Report
System: The UNT Digital Library
DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS (open access)

DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based upon the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by …
Date: May 23, 2008
Creator: Eibling, R
Object Type: Report
System: The UNT Digital Library
GLAST and Suzaku: Study on Cosmic-Ray Acceleration And Interaction in the Cosmos (open access)

GLAST and Suzaku: Study on Cosmic-Ray Acceleration And Interaction in the Cosmos

The Gamma-Ray Large Area Space Telescope (GLAST) is an international and multiagency mission scheduled for launch in the fall 2007. The Large Area Telescope (LAT), the primary instrument of the mission, will survey the high energy sky found to be very dynamic and surprisingly diverse by its predecessor the Energetic Gamma Ray Experiment Telescope (EGRET). GLAST-LAT will have a much improved sensitivity when compared with EGRET and extend the higher energy coverage to {approx} 300 GeV. The instrument is now mounted on the spacecraft and undergoing a suite of pre-flight tests. Data analysis software has been tried out by collaborators in two rounds of 'Data Challenges' using simulated observations including backgrounds. The instrument performance and observational data on selected sources presented here have been obtained through the Data Challenges in the collaborative efforts. There are features in the GLAST-LAT observation possibly unfamiliar to X-ray astronomers: (1) GLAST will operate mostly in the survey mode; (2) the foreground objects (gas, dust, and star-light) become gamma-ray sources; (3) multiple sources will be 'confused' because of the wide point-spread-function. The last two features will pose a challenge for analysis on extended Galactic sources such as supernova remnants and pulsar wind nebulae: multi-wavelength study …
Date: May 23, 2008
Creator: Kamae, T. & /KIPAC, Menlo Park /SLAC
Object Type: Article
System: The UNT Digital Library
Hybrid Paper/Electronic Archival Collecting, Processing, and Reference: A View from SLAC (open access)

Hybrid Paper/Electronic Archival Collecting, Processing, and Reference: A View from SLAC

Real-time archiving of mixed paper and digital collections presents challenges not encountered in the primarily paper environment. A few recent examples from the archives of the Stanford Linear Accelerator Center highlight obstacles encountered, and attempted and contemplated solutions.
Date: May 23, 2008
Creator: Deken, Jean M.
Object Type: Article
System: The UNT Digital Library
Intense Ion Beam for Warm Dense Matter Physics (open access)

Intense Ion Beam for Warm Dense Matter Physics

The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam …
Date: May 23, 2008
Creator: Coleman, Joshua Eugene
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Performance of a Buried Radioactive High Level Waste Glass After 24 Years (open access)

Performance of a Buried Radioactive High Level Waste Glass After 24 Years

None
Date: May 23, 2008
Creator: Jantzen, Carol M.; Kaplan, Daniel J.; Bibler, Ned E.; Peeler, David K. & Plodinec, M. J.
Object Type: Article
System: The UNT Digital Library
Reduced Basis Method for Nanodevices Simulation (open access)

Reduced Basis Method for Nanodevices Simulation

Ballistic transport simulation in nanodevices, which involves self-consistently solving a coupled Schrodinger-Poisson system of equations, is usually computationally intensive. Here, we propose coupling the reduced basis method with the subband decomposition method to improve the overall efficiency of the simulation. By exploiting a posteriori error estimation procedure and greedy sampling algorithm, we are able to design an algorithm where the computational cost is reduced significantly. In addition, the computational cost only grows marginally with the number of grid points in the confined direction.
Date: May 23, 2008
Creator: Pau, George Shu Heng
Object Type: Article
System: The UNT Digital Library
2003 East Tennessee Technology Park Annual Illness and Injury Surveillance Report (open access)

2003 East Tennessee Technology Park Annual Illness and Injury Surveillance Report

Annual Illness and Injury Surveillance Program report for 2003 for the East Tennessee Technology Park (K-25).The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
Date: May 23, 2007
Creator: United States. Department of Energy. Office of Illness and Injury Prevention Programs.
Object Type: Report
System: The UNT Digital Library
2003 Idaho National Engineering and Environmental Laboratory Annual Illness and Injury Surveillance Report (open access)

2003 Idaho National Engineering and Environmental Laboratory Annual Illness and Injury Surveillance Report

Annual Illness and Injury Surveillance Program report for 2003 for Idaho National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
Date: May 23, 2007
Creator: United States. Department of Energy. Office of Illness and Injury Prevention Programs.
Object Type: Report
System: The UNT Digital Library