A Model for Tow Impregnation and Consolidation for Partially Impregnated Thermoset Prepregs (open access)

A Model for Tow Impregnation and Consolidation for Partially Impregnated Thermoset Prepregs

The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presented that determines the consolidation and impregnation of a thermoset prepreg tape under an input pressure profile. A parametric study has been performed to characterize the behavior of varying tow speed and compaction forces on the degree of consolidation. Results indicate that increased tow consolidation is achieved with slower tow speeds and higher compaction forces although the relationship is not linear. The overall modeling of this project is motivated to address optimization of the 'green state' composite properties and processing parameters to reduce or eliminate 'cured state' defects, such as porosity and de-lamination. This work is partially funded by the Department …
Date: May 23, 2011
Creator: Jr, John J. Gangloff; Sinha, Shatil & Advani, Suresh G.
Object Type: Article
System: The UNT Digital Library
OECD 2-D Core Concrete Interaction (CCI) tests : CCI-2 test plan, Rev. 0 January 31, 2004. (open access)

OECD 2-D Core Concrete Interaction (CCI) tests : CCI-2 test plan, Rev. 0 January 31, 2004.

The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed …
Date: May 23, 2011
Creator: Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschlimann, R. W. & Basu, S. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
OECD MCCI 2-D Core Concrete Interaction (CCI) tests : CCI-2 test data report-thermalhydraulic results, Rev. 0 October 15, 2004. (open access)

OECD MCCI 2-D Core Concrete Interaction (CCI) tests : CCI-2 test data report-thermalhydraulic results, Rev. 0 October 15, 2004.

The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD/MCCI 2-D Core Concrete Interaction (CCI) tests : final report February 28, 2006. (open access)

OECD/MCCI 2-D Core Concrete Interaction (CCI) tests : final report February 28, 2006.

Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the EPRI-sponsored Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD MCCI project 2-D Core Concrete Interaction (CCI) tests : CCI-3 test data report-thermalhydraulic results. Rev. 0 October 15, 2005. (open access)

OECD MCCI project 2-D Core Concrete Interaction (CCI) tests : CCI-3 test data report-thermalhydraulic results. Rev. 0 October 15, 2005.

The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of a third long-term 2-D Core-Concrete Interaction (CCI) experiment …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD MCCI project enhancing instrumentation for reactor materials experiments, Rev. 0 September 3, 2002. (open access)

OECD MCCI project enhancing instrumentation for reactor materials experiments, Rev. 0 September 3, 2002.

Reactor safety experiments for studying the reactions of a molten core (corium) with water and/or concrete involve materials at extremely high temperature. Such high temperature severely restricts the types of sensors that can be employed to measure characteristics of the corium itself. Yet there is great interest in improving instrumentation so that the state of the melt can be established with more precision. In particular, it would be beneficial to increase both the upper range limit and accuracy of temperature measurements. The poor durability of thermocouples at high temperature is also an important issue. For experiments involving a water-quenched melt, direct measurements of the growth rate of the crust separating the melt and water would be of great interest. This is a key element in determining the nature of heat transfer between the melt and coolant. Despite its importance, no one has been able to directly measure the crust thickness during such tests. This paper considers three specialized sensors that could be introduced to enhance melt characterization: (1) A commercially fabricated, single point infrared temperature measurement with the footprint of a thermowell. A lens assembly and fiber optic cable linked to a receiver and amplifier measures the temperature at the …
Date: May 23, 2011
Creator: Lomperski, S. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD MCCI project final report, February 28, 2006. (open access)

OECD MCCI project final report, February 28, 2006.

Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002. (open access)

OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series …
Date: May 23, 2011
Creator: Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschliman, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003. (open access)

OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. The Melt Coolability and Concrete Interaction (MCCI) program is pursuing separate effect tests to examine the viability of the melt coolability mechanisms identified as part of the MACE program. These mechanisms include bulk cooling, water ingression, volcanic eruptions, and crust breach. At the second PRG meeting held at ANL on 22-23 October 2002, a preliminary design1 for a separate effects test to investigate the melt eruption cooling mechanism was presented for PRG review. At this meeting, NUPEC made several recommendations on the experiment approach aimed at optimizing the chances of achieving a floating crust boundary condition in this test. The principal recommendation was to incorporate a mortar sidewall liner into the test design, since data from the COTELS experiment program indicates that corium does not …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD MCCI project Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-1 test data report : thermal hydraulic results. Rev. 0 September 20, 2002. (open access)

OECD MCCI project Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-1 test data report : thermal hydraulic results. Rev. 0 September 20, 2002.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench …
Date: May 23, 2011
Creator: Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD MCCI Small-Scale Water Ingression and Crust Strength Tests (Sswics) Design Report, Rev. 2 October 31, 2002. (open access)

OECD MCCI Small-Scale Water Ingression and Crust Strength Tests (Sswics) Design Report, Rev. 2 October 31, 2002.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are planned to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests …
Date: May 23, 2011
Creator: Farmer, M.; Lomperski, S.; Kilsdonk, D.; Aeschlimann, B. & Pfeiffer, P.
Object Type: Report
System: The UNT Digital Library
OECD MCCI Small-Scale Water Ingression and Crust Strength Tests (Sswics) Sswics-3 Test Data Report : Thermal Hydraulic Results, Rev. 0 February 19, 2003. (open access)

OECD MCCI Small-Scale Water Ingression and Crust Strength Tests (Sswics) Sswics-3 Test Data Report : Thermal Hydraulic Results, Rev. 0 February 19, 2003.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench …
Date: May 23, 2011
Creator: Lomperski, S.; Farmer, M. T.; Kilsdonk, D. & Aeschlimann, B. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
OECD MMCI 2-D Core Concrete Interaction (CCI) Tests : CCCI-1 Test Data Report-Thermalhydraulic Results. Rev 0 January 31, 2004. (open access)

OECD MMCI 2-D Core Concrete Interaction (CCI) Tests : CCCI-1 Test Data Report-Thermalhydraulic Results. Rev 0 January 31, 2004.

The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten coreconcrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Aeschlimann, R. W. & Basu, S. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
OECD MMCI Small-Scale Water Ingression and Crust Strength Tests (Sswics) Sswics-1 Final Data Report, Rev. 1 February 10, 2003.; Report, Rev. 1 (open access)

OECD MMCI Small-Scale Water Ingression and Crust Strength Tests (Sswics) Sswics-1 Final Data Report, Rev. 1 February 10, 2003.; Report, Rev. 1

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure; and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench …
Date: May 23, 2011
Creator: Lomperski, S.; Farmer, M. T.; Kilsdonk, D. & Aeschlimann, B. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
OECD MMCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-2 test data report : thermal hydraulic results, Rev. 0 September 20, 2002. (open access)

OECD MMCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-2 test data report : thermal hydraulic results, Rev. 0 September 20, 2002.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench …
Date: May 23, 2011
Creator: Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
Oecm MCCI Small-Scale Water Ingression and Crust Strength Tests (Sswics) Sswics-2 Final Data Report, Rev. 0 February 12, 2003. (open access)

Oecm MCCI Small-Scale Water Ingression and Crust Strength Tests (Sswics) Sswics-2 Final Data Report, Rev. 0 February 12, 2003.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench …
Date: May 23, 2011
Creator: Lomperski, S.; Farmer, M. T.; Kilsdonk, D. & Aeschlimann, B. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
Science and Technology Review June 2011 (open access)

Science and Technology Review June 2011

None
Date: May 23, 2011
Creator: Nikolic, R. J.
Object Type: Report
System: The UNT Digital Library
Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux. (open access)

Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux.

This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in {sup 235}U) to LEU (19.75% enriched in {sup 235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. This section is regrouping all of the thermal property tables. Section 2 provides a summary of the thermal properties in form of tables while the following sections present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: (i) aluminum, (ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), (iii) beryllium, and (iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase's volume fraction. Appendix B shows the evolution of the BR2 maximum heat flux with burnup.
Date: May 23, 2011
Creator: Dionne, B.; Kim, Y. S. & Hofman, G. L. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
Uncompensated magnetization and exchange-bias field in La0.7Sr0.3MnO3/YMnO3 bilayers: The influence of the ferromagnetic layer (open access)

Uncompensated magnetization and exchange-bias field in La0.7Sr0.3MnO3/YMnO3 bilayers: The influence of the ferromagnetic layer

None
Date: May 23, 2011
Creator: Zandalazini, C.; Esquinazi, P.; Bridoux, G.; Barzola-Quiquia, J.; Ohldag, H. & Arenholz, E.
Object Type: Article
System: The UNT Digital Library
Angular distribution of laser ablation plasma (open access)

Angular distribution of laser ablation plasma

An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag{sup 1+} which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about {+-}10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.
Date: May 23, 2010
Creator: Kondo, K.; Kanesue, T.; Dabrowski, R. & Okamura, M.
Object Type: Article
System: The UNT Digital Library
ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE (open access)

ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE

In support of the Large Hadron Collider (LHC) luminosity upgrade, the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a design short sample gradient of 219 T/m at 1.9 K and a peak field approaching 15 T, one of the main challenges of this magnet is to provide appropriate mechanical support to the coils. Compared to the previous LARP Technology Quadrupole and Long Quadrupole magnets, the purpose of HQ is also to demonstrate accelerator quality features such as alignment and cooling. So far, 8 HQ coils have been fabricated and 4 of them have been assembled and tested in HQ01a. This paper presents the mechanical assembly and test results of HQ01a.
Date: May 23, 2010
Creator: Felice, H.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Hafalia, R. et al.
Object Type: Article
System: The UNT Digital Library
Beam break-up estimates for the ERL at BNL (open access)

Beam break-up estimates for the ERL at BNL

A prototype Ampere-class superconducting energy recovery linac (ERL) is under advanced construction at BNL. The ERL facility is comprised of a five-cell SC Linac plus a half-cell SC photo-injector RF electron gun, both operating at 703.75 MHz. The facility is designed for either a high-current mode of operation up to 0.5 A at 703.75 MHz or a high-bunch-charge mode of 5 nC at 10 MHz bunch frequency. The R&D facility serves a test bed for an envisioned electron-hadron collider, eRHIC. The high-current, high-charge operating parameters make effective higher-order-mode (HOM) damping mandatory, and requires the determination of HOM tolerances for a cavity upgrade. The niobium cavity has been tested at superconducting temperatures and has provided measured quality factors (Q) for a large number of modes. These numbers were used for the estimate of the beam breakup instability (BBU). The facility will be assembled with a highly flexible lattice covering a vast operational parameter space for verification of the estimates and to serve as a test bed for the concepts directed at future projects.
Date: May 23, 2010
Creator: Ben-Zvi, Ilan; Calaga, R.; Hahn, H.; Hammons, L.; Johnson, E.; Kayran, D. et al.
Object Type: Article
System: The UNT Digital Library
BEAM CONTAINMENT SYSTEM FOR NSLS-II (open access)

BEAM CONTAINMENT SYSTEM FOR NSLS-II

The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.
Date: May 23, 2010
Creator: Kramer, S. L.; Casey, W. & Job, P. K.
Object Type: Article
System: The UNT Digital Library
Bunch Length Effects in the Beam-Beam Compensation With an Electron Lens (open access)

Bunch Length Effects in the Beam-Beam Compensation With an Electron Lens

N/A
Date: May 23, 2010
Creator: Fischer, W.
Object Type: Article
System: The UNT Digital Library