GRiP - A flexible approach for calculating risk as a function of consequence, vulnerability, and threat. (open access)

GRiP - A flexible approach for calculating risk as a function of consequence, vulnerability, and threat.

Get a GRiP (Gravitational Risk Procedure) on risk by using an approach inspired by the physics of gravitational forces between body masses! In April 2010, U.S. Department of Homeland Security Special Events staff (Protective Security Advisors [PSAs]) expressed concern about how to calculate risk given measures of consequence, vulnerability, and threat. The PSAs believed that it is not 'right' to assign zero risk, as a multiplicative formula would imply, to cases in which the threat is reported to be extremely small, and perhaps could even be assigned a value of zero, but for which consequences and vulnerability are potentially high. They needed a different way to aggregate the components into an overall measure of risk. To address these concerns, GRiP was proposed and developed. The inspiration for GRiP is Sir Isaac Newton's Universal Law of Gravitation: the attractive force between two bodies is directly proportional to the product of their masses and inversely proportional to the squares of the distance between them. The total force on one body is the sum of the forces from 'other bodies' that influence that body. In the case of risk, the 'other bodies' are the components of risk (R): consequence, vulnerability, and threat (which …
Date: April 8, 2011
Creator: Whitfield, R. G.; Buehring, W. A. & Bassett, G. W. (Decision and Information Sciences)
System: The UNT Digital Library
Provenance management in Swift with implementation details. (open access)

Provenance management in Swift with implementation details.

The Swift parallel scripting language allows for the specification, execution and analysis of large-scale computations in parallel and distributed environments. It incorporates a data model for recording and querying provenance information. In this article we describe these capabilities and evaluate interoperability with other systems through the use of the Open Provenance Model. We describe Swift's provenance data model and compare it to the Open Provenance Model. We also describe and evaluate activities performed within the Third Provenance Challenge, which consisted of implementing a specific scientific workflow, capturing and recording provenance information of its execution, performing provenance queries, and exchanging provenance information with other systems. Finally, we propose improvements to both the Open Provenance Model and Swift's provenance system.
Date: April 1, 2011
Creator: Gadelha, L. M. R.; Clifford, B.; Mattoso, M.; Wilde, M.; Foster, I. & Janeiro), (Federal Univ. of Rio de
System: The UNT Digital Library
Uptakes of CS and SR on San Joaquin Soil Measured Following Astm Method c1733. (open access)

Uptakes of CS and SR on San Joaquin Soil Measured Following Astm Method c1733.

Series of tests were conducted following ASTM Standard Procedure C1733 to evaluate the repeatability of the test and the effects of several test parameters, including the solution-to-soil mass ratio, test duration, pH, and the concentrations of contaminants in the solution. This standard procedure is recommended for measuring the distribution coefficient (K{sub d}) of a contaminant in a specific soil/groundwater system. One objective of the current tests was to identify experimental conditions that can be used in future interlaboratory studies to determine the reproducibility of the test method. This includes the recommendation of a standard soil, the range of contaminant concentrations and solution matrix, and various test parameters. Quantifying the uncertainty in the distribution coefficient that can be attributed to the test procedure itself allows the differences in measured values to be associated with differences in the natural systems being studied. Tests were conducted to measure the uptake of Cs and Sr dissolved as CsCl and Sr(NO{sub 3}){sub 2} in a dilute NaHCO{sub 3}/SiO{sub 2} solution (representing contaminants in a silicate groundwater) by a NIST standard reference material of San Joaquin soil (SRM 2709a). Tests were run to measure the repeatability of the method and the sensitivity of the test response …
Date: April 4, 2012
Creator: Ebert, W.L. & Petri, E.T. (Chemical Sciences and Engineering Division)
System: The UNT Digital Library
Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005. (open access)

Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product …
Date: April 15, 2011
Creator: Cronauer, D. C. (Chemical Sciences and Engineering Division)
System: The UNT Digital Library
Impacts of TMDLs on coal-fired power plants. (open access)

Impacts of TMDLs on coal-fired power plants.

The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded …
Date: April 30, 2010
Creator: Veil, J. A. & Division, Environmental Science
System: The UNT Digital Library