Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk (open access)

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

Fossil fuels are abundant, inexpensive to produce, and are easily converted to usable energy by combustion as demonstrated by mankind's dependence on fossil fuels for over 80% of its primary energy supply (13). This reliance on fossil fuels comes with the cost of carbon dioxide (CO{sub 2}) emissions that exceed the rate at which CO{sub 2} can be absorbed by terrestrial and oceanic systems worldwide resulting in increases in atmospheric CO{sub 2} concentration as recorded by direct measurements over more than five decades (14). Carbon dioxide is the main greenhouse gas linked to global warming and associated climate change, the impacts of which are currently being observed around the world, and projections of which include alarming consequences such as water and food shortages, sea level rise, and social disruptions associated with resource scarcity (15). The current situation of a world that derives the bulk of its energy from fossil fuel in a manner that directly causes climate change equates to an energy-climate crisis. Although governments around the world have only recently begun to consider policies to avoid the direst projections of climate change and its impacts, sustainable approaches to addressing the crisis are available. The common thread of feasible strategies …
Date: April 1, 2011
Creator: Oldenburg, C.M.
System: The UNT Digital Library
A View on Future Building System Modeling and Simulation (open access)

A View on Future Building System Modeling and Simulation

This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics …
Date: April 1, 2011
Creator: Wetter, Michael
System: The UNT Digital Library
Hydrogeophysics (open access)

Hydrogeophysics

Developing a predictive understanding of subsurface flow and transport is complicated by the disparity of scales across which controlling hydrological properties and processes span. Conventional techniques for characterizing hydrogeological properties (such as pumping, slug, and flowmeter tests) typically rely on borehole access to the subsurface. Because their spatial extent is commonly limited to the vicinity near the wellbores, these methods often can not provide sufficient information to describe key controls on subsurface flow and transport. The field of hydrogeophysics has evolved in recent years to explore the potential that geophysical methods hold for improving the quantification of subsurface properties and processes relevant for hydrological investigations. This chapter is intended to familiarize hydrogeologists and water resource professionals with the state-of-the-art as well as existing challenges associated with hydrogeophysics. We provide a review of the key components of hydrogeophysical studies, which include: geophysical methods commonly used for shallow subsurface characterization; petrophysical relationships used to link the geophysical properties to hydrological properties and state variables; and estimation or inversion methods used to integrate hydrological and geophysical measurements in a consistent manner. We demonstrate the use of these different geophysical methods, petrophysical relationships, and estimation approaches through several field-scale case studies. Among other applications, …
Date: April 1, 2010
Creator: Hubbard, S. S. & Linde, N.
System: The UNT Digital Library
OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS (open access)

OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining …
Date: April 1, 2009
Creator: Brisson, M
System: The UNT Digital Library
Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory (open access)

Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and …
Date: April 1, 2008
Creator: Zhu, Y. & Wall, J.
System: The UNT Digital Library
MSTD 2007 Publications and Patents (open access)

MSTD 2007 Publications and Patents

The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuels and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.
Date: April 1, 2008
Creator: King, W. E.
System: The UNT Digital Library
Philosophy of Mind and the Problem of FreeWill in the Light of Quantum Mechanics. (open access)

Philosophy of Mind and the Problem of FreeWill in the Light of Quantum Mechanics.

Arguments pertaining to the mind-brain connection and to the physical effectiveness of our conscious choices have been presented in two recent books, one by John Searle, the other by Jaegwon Kim. These arguments are examined, and it is argued that the difficulties encountered arise from a defective understanding and application of a pertinent part of contemporary science, namely quantum mechanics.
Date: April 1, 2008
Creator: Stapp, Henry & Stapp, Henry P
System: The UNT Digital Library
Macroscopic Modeling of Polymer-Electrolyte Membranes (open access)

Macroscopic Modeling of Polymer-Electrolyte Membranes

In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.
Date: April 1, 2007
Creator: Weber, A.Z. & Newman, J.
System: The UNT Digital Library
The CKM quark-mixing matrix (open access)

The CKM quark-mixing matrix

None
Date: April 1, 2006
Creator: Ligeti, Zoltan; Ceccucci, Augusto; Ligeti, Zoltan & Sakai, Yoshihide
System: The UNT Digital Library
Improving Fan System Performance: A Sourcebook for Industry (open access)

Improving Fan System Performance: A Sourcebook for Industry

This is one of a series of sourcebooks on motor-driven equipment produced by the Industrial Technologies Program. It provides a reference for industrial fan systems users, outlining opportunities to improve fan system performance.
Date: April 1, 2003
Creator: unknown
System: The UNT Digital Library
Laboratories for the 21st Century: Energy Analysis (open access)

Laboratories for the 21st Century: Energy Analysis

This study, done for the joint DOE-EPA Laboratories for the 21st Century program ("Labs 21"), used a simplified computer model to analyze the effects of energy efficiency measures in laboratory buildings in four different climates: those of Minneapolis, Denver, Seattle, and Atlanta. Results show that using variable-air-volume fume hoods can reduce lab energy costs as much as$1 per square foot in any climate. Energy-recovery systems such as enthalpy wheels also save varying amounts of energy and money in all climates. Savings for other measures, such as heat pipes and evaporated cooling, are also included.
Date: April 1, 2003
Creator: unknown
System: The UNT Digital Library
Glass Industry of the Future: Energy and Environmental Profile of the U. S. Glass Industry (open access)

Glass Industry of the Future: Energy and Environmental Profile of the U. S. Glass Industry

Report documenting the partnership between DOEs Office of Industrial Technologies and the U.S. glass industry.
Date: April 1, 2002
Creator: unknown
System: The UNT Digital Library
Counting on Solar Power for Disaster Relief: Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet (open access)

Counting on Solar Power for Disaster Relief: Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

When disaster strikes, electric power is usually the first critically important service to be lost. After several years of research and development, portable electric generator sets (gensets) are now entering the marketplace. The new gensets make use of solar electric panels known as photovoltaics (PV) to produce electricity. These gensets are reliable, safe to operate, highly mobile and will supply much-needed power for emergency response teams.
Date: April 1, 1999
Creator: unknown
System: The UNT Digital Library
High Energy Physics Particle Detector Magnets (open access)

High Energy Physics Particle Detector Magnets

None
Date: April 1, 1997
Creator: Green, Michael A.
System: The UNT Digital Library
Amendments to the Texas State Plan for Federal Adult Education Funding: For Fiscal Years 1990-1993 Under the Adult Education Act (open access)

Amendments to the Texas State Plan for Federal Adult Education Funding: For Fiscal Years 1990-1993 Under the Adult Education Act

This report covers amendments to the Texas state plan for Federal Adult Education Funding.
Date: April 1, 1992
Creator: Texas Education Agency
System: The Portal to Texas History
RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT (open access)

RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent …
Date: April 1, 1982
Creator: Friedlander, Erwin M. & Heckman, Harry H.
System: The UNT Digital Library
Tank destroyer, towed gun platoon. (open access)

Tank destroyer, towed gun platoon.

Describes the organization, tactics, and techniques of the towed tank destroyer platoon.
Date: April 1, 1944
Creator: United States. War Department.
System: The UNT Digital Library
Full Text of the Game, Fish, and Oyster Laws of Texas, April 1930 (open access)

Full Text of the Game, Fish, and Oyster Laws of Texas, April 1930

Text of laws governing fishing and oyster culture, as well as regulation by the Game, Fish, and Oyster Commission. Index starts on page 137.
Date: April 1, 1930
Creator: Texas. Game, Fish, and Oyster Commission.
System: The Portal to Texas History