Refractory materials for high-temperature thermoelectric energy conversion (open access)

Refractory materials for high-temperature thermoelectric energy conversion

Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. It was also shown that ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT > 1 is realizable. These materials can be divided into two classes: (i) the rare-earth chalcogenides, which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (ii) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.
Date: January 1, 1983
Creator: Wood, C. & Emin, D.
System: The UNT Digital Library
Semiconductor processing with excimer lasers (open access)

Semiconductor processing with excimer lasers

The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications.
Date: January 1, 1983
Creator: Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E. & Cheng, L.J.
System: The UNT Digital Library
Mathematical simulation of contaminant distribution in and around the uranium mill tailing piles, Riverton, Wyoming (open access)

Mathematical simulation of contaminant distribution in and around the uranium mill tailing piles, Riverton, Wyoming

As part of the Research and Development phase of the Uranium Mill Tailings Remedial Action (UMTRA) program, the Lawrence Berkeley Laboratory (LBL) has set itself the goal of explaining the physico-chemical evolution of the Riverton site on the basis of the already collected field data at the site (Tokunaga and Narasimhan, 1982, Smith and Moed, 1982; White et al., 1984). The predictive aspects as well as addressing the question of critical quantity of field data have to be considered during the design phase of the project as a joint effort between the LBL team and the construction engineers. At the present time, LBL is in the process of completing the Research and Development phase of the work. As of this writing, the development of an appropriate set of mathematical models has been completed. The computations of the soil-water regime at the upper tailings surface, involving climatological factors is nearing completion. Computations of chemical transport are still in progress. This paper is devoted to a description of the key mathematical issues, the mathematical models that are needed to address these issues and a discussion of the model results pertaining to the soil water regime at the tailings-atmosphere interface. 11 references, 3 …
Date: February 1, 1983
Creator: Narasimhan, T. N.; Tokunaga, T.; White, A. F. & Smith, A. R.
System: The UNT Digital Library
Investigation of the Pathway of Contaminated Soil Transported to Plant Surfaces by Raindrop Splash (open access)

Investigation of the Pathway of Contaminated Soil Transported to Plant Surfaces by Raindrop Splash

The environmental transport pathway of soil-borne radioisotopes to vegetation surfaces via raindrop splash was studied. The data show that soil can significantly contribute to the contamination found on plants. Further detailed study is needed to calculate the rate constant for the raindrop splash and retention pathways. 8 references, 1 figure. (ACR)
Date: October 21, 1983
Creator: Dreicer, M.; Hakonson, T. E.; Whicker, F. W. & White, G. C.
System: The UNT Digital Library
SP-100, a project manager`s view. Technical information report (open access)

SP-100, a project manager`s view. Technical information report

Born to meet the special needs of America`s space effort, the SP-100 Program testifies to the cooperation among government agencies. The Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), and the Defense Advanced Research Projects Agency (DARPA) are working together to produce a 100-kW power system for use in outer space. At this point in the effort, it is appropriate to review: The approach to meet program goals; the status of activities of the Project Office, managed by the Jet Propulsion Laboratory (JPL); and, because this is a meeting on materials, answers beings developed by the Project Office to vital questions on refractory alloy technology.
Date: December 1, 1983
Creator: Truscello, V. C.
System: The UNT Digital Library