Quantitative tunneling spectroscopy of nanocrystals (open access)

Quantitative tunneling spectroscopy of nanocrystals

The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics
Date: May 25, 2007
Creator: First, Phillip N; Whetten, Robert L & Schaaff, T Gregory
Object Type: Report
System: The UNT Digital Library
UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES (open access)

UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil …
Date: May 25, 2007
Creator: Bergren, C; Wade Whitaker, W & Mary Flora, M
Object Type: Article
System: The UNT Digital Library
Status of Diamond Secondary Emission Enhanced Photocathode (open access)

Status of Diamond Secondary Emission Enhanced Photocathode

The diamond secondary emission enhanced photocathode (SEEP) provides an attractive alternative for simple photo cathodes in high average current electron injectors. It reduces the laser power required to drive the cathode, simultaneously isolating the cathode and the FW cavity from each other, thereby protecting them from contamination and increasing their life time. In this paper, we present the latest results on the secondary electron yield using pulsed thermionic and photo cathodes as primary electron sources, shaping the diamond using laser ablation and reactive ion etching as well as the theoretical underpinning of secondary electron generation and preliminary results of modeling.
Date: May 25, 2007
Creator: Rao, T.; Ben-Zvi, Ilan; Chang, X.; Grimes, J.; Grover, R.; Isakovic, A. et al.
Object Type: Article
System: The UNT Digital Library
Development and Test of a Prototype 100MVA Superconducting Generator (open access)

Development and Test of a Prototype 100MVA Superconducting Generator

In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: • Identify and develop technologies that would be needed for such a generator. • Develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology. • Perform proof of concept tests at the 1.5 MW level for GE’s proprietary warm iron rotor HTS generator concept. • Design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables.
Date: May 25, 2007
Creator: Fogarty, James M. & Bray, James W.
Object Type: Report
System: The UNT Digital Library
New Kinematical Constraints on Cosmic Acceleration (open access)

New Kinematical Constraints on Cosmic Acceleration

We present and employ a new kinematical approach to ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t)=1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t)=j, we measure q{sub 0}=-0.81 {+-} 0.14 and j=2.16 +0.81 -0.75, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible.
Date: May 25, 2007
Creator: Rapetti, David; Allen, Steve W.; Amin, Mustafa A. & Blandford, Roger
Object Type: Article
System: The UNT Digital Library
Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas (open access)

Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using …
Date: May 25, 2007
Creator: Roy S. Baty, F. Farassat, John A. Hargreaves
Object Type: Report
System: The UNT Digital Library
Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois (open access)

Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory’s Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007).
Date: May 25, 2007
Creator: Adams, W. C.
Object Type: Report
System: The UNT Digital Library
CANCELLED Molecular dynamics simulations of noble gases in liquidwater: Solvati on structure, self-diffusion, and kinetic isotopeeffect (open access)

CANCELLED Molecular dynamics simulations of noble gases in liquidwater: Solvati on structure, self-diffusion, and kinetic isotopeeffect

Despite their great importance in low-temperaturegeochemistry, self-diffusion coefficients of noble gas isotopes in liquidwater (D) have been measured only for the major isotopes of helium, neon,krypton and xenon. Data on the self-diffusion coefficients of minor noblegas isotopes are essentially non-existent and so typically are estimatedby a kinetic theory model in which D varies as the inverse square root ofthe isotopic mass (m): D proportional to m-0.5. To examine the validityof the kinetic theory model, we performed molecular dynamics (MD)simulations of the diffusion of noble gases in ambient liquid water withan accurate set of noble gas-water interaction potentials. Our simulationresults agree with available experimental data on the solvation structureand self-diffusion coefficients of the major noble gas isotopes in liquidwater and reveal for the first time that the isotopic mass-dependence ofall noble gas self-diffusion coefficients has the power-law form Dproportional to m-beta with 0<beta<0.2. Thus our results callinto serious question the widespread assumption that the square rootmodel can be applied to estimate the kinetic fractionation of noble gasisotopes caused by diffusion in ambient liquid water.
Date: May 25, 2007
Creator: Bourg, I.C. & Sposito, G.
Object Type: Report
System: The UNT Digital Library
Symmetry Breaking in Few Layer Graphene Films (open access)

Symmetry Breaking in Few Layer Graphene Films

Recently, it was demonstrated that the quasiparticledynamics, the layer-dependent charge and potential, and the c-axisscreening coefficient could be extracted from measurements of thespectral function of few layer graphene films grown epitaxially on SiCusing angle-resolved photoemission spectroscopy (ARPES). In this articlewe review these findings, and present detailed methodology for extractingsuch parameters from ARPES. We also present detailed arguments againstthe possibility of an energy gap at the Dirac crossing ED.
Date: May 25, 2007
Creator: Bostwick, A.; Ohta, T.; McChesney, J.L.; Emtsev, K.; Seyller,Th.; Horn, K. et al.
Object Type: Article
System: The UNT Digital Library
Graphical Environmental Tools for Application to Gamma-Ray Energy Tracking Arrays (open access)

Graphical Environmental Tools for Application to Gamma-Ray Energy Tracking Arrays

In this CRADA, Oak Ridge National Laboratory (ORNL) assisted RIS Corporation of Knoxville, TN, in the development of graphical environment tools for the development and programming of high speed real-time algorithms to be implemented in a Field-Programmable Gate Array (FPGA). The primary application was intended to be digital signal processing for gamma-ray spectroscopy, in particular for Gamma-Ray Energy Tracking Arrays such as the GRETINA project. Key components of this work included assembling an evaluation platform to verify designs on actual hardware, and creating various types of Simulink functional blocks for peak-shaping and constant-fraction discrimination.
Date: May 25, 2007
Creator: Radford, D.C.; Blair, M. & Pauly, S., Todd, R.
Object Type: Report
System: The UNT Digital Library
Top Operations and Maintenance (O&M) Efficiency Opportunities at DoD/Army Sites - A Guide for O&M/Energy Managers and Practitioners (open access)

Top Operations and Maintenance (O&M) Efficiency Opportunities at DoD/Army Sites - A Guide for O&M/Energy Managers and Practitioners

This report, sponsored the Army's Energy Engineering Analysis Program, provides the Operations and Maintenance (O&M) Energy manager and practitioner with useful information about the top O&M opportunities consistently found across the DoD/Army sector. The target is to help the DoD/Army sector develop a well-structured and organized O&M program.
Date: May 25, 2007
Creator: Sullivan, Gregory P.; Dean, Jesse D. & Dixon, Douglas R.
Object Type: Report
System: The UNT Digital Library
Running fermi with one-stage compressor: advantages, layout,performance (open access)

Running fermi with one-stage compressor: advantages, layout,performance

CBP-Tech Note-345 (July 2005), devoted to a study of microbunching instability in FERMI@ELETTRA linac quotes '...the above analysis shows that the most of the gain in microbunching instability occurs after BC2, i.e. after transformation of the energy modulation to the spatial modulation that takes place in BC2. It is possible to avoid that if we use only BC1 for all our needs for bunch compression. There are also additional advantages for a mitigation of the microbunching instability related to that. First, we would need to increase R56 in BC1 (for given energy chirp in the electron beam). Second, a relative energy spread is significantly larger at BC1 than at BC2. Both these factors would contribute to instability suppression due to increased Landau damping effect.' One additional argument was however missed in that report. Instability smearing due to finite emittance is stronger in BC1 simply because the geometrical emittance is larger than in BC2. In spite of the considerations in favor of a lattice with one-stage compressor, it was thought at the time that the two bunch compressors configuration was still preferable as it appeared difficult to obtain a flat-flat distribution at the end of the linac with only one bunch …
Date: May 25, 2007
Creator: Cornacchia, M.; Craievich, P.; Di Mitri, S.; Penco, G.; Venturini, M. & Zholents, A.
Object Type: Report
System: The UNT Digital Library