Studies of combustion reactions at the state-resolved differential cross section level (open access)

Studies of combustion reactions at the state-resolved differential cross section level

State-resolved differential reaction cross sections provide perhaps the most detailed information about the mechanism of chemical reaction, but heretofore they have been extremely difficult to measure. This program explores a new technique for obtaining differential cross sections with product state resolution. The three-dimensional velocity distribution of state-selected reaction products is determined by ionizing the appropriate product, waiting for a delay while it recoils along the trajectory imparted by the reaction, and finally projecting the spatial distribution of ions onto a two dimensional screen using a pulsed electric field. Knowledge of the arrival time allows the ion position to be converted to a velocity, and the density of velocity projections can be inverted mathematically to provide the three-dimensional velocity distribution for the selected product. The main apparatus has been constructed and tested using photodissociations. The proposed research will both develop the new technique and employ it to investigate methyl radical, formyl radical, and hydrogen atom reactions which are important in combustion processes. We intend specifically to characterize the reactions of CH{sub 3} with H{sub 2} and H{sub 2}CO; of HCO with O{sub 2}; and of H with CH{sub 4},CO{sub 2}, and O{sub 2}.
Date: March 25, 1992
Creator: Houston, P. L.
System: The UNT Digital Library
Experimental and computer modeling studies of isotopically selective two-step laser photodissociation of small molecules. Final report (open access)

Experimental and computer modeling studies of isotopically selective two-step laser photodissociation of small molecules. Final report

The approach to laser isotope separation taken in this study is based on isotopically selective, two-step, laser photodissociation of small molecules. A primary goal of this study is the measurement of fundamental molecular processes which control the two-step, photodissociative isotope enrichment process. This objective has led to experimental measurements of uv photodissociation cross sections for vibrationally excited states of several small molecules, including the first cross section reported for any neutral molecule in a specific, excited vibrational state. A second goal of this study has been the laboratory demonstration of isotope enrichment for isotopes of practical interest and for processes with a potential for larger scale production. Where possible, efforts have focussed on the separation of middle isotopes, such as {sup 17}O and {sup 33}S, which are expensive and difficult to separate using other techniques. Considerable success has been achieved in demonstrating the enrichment of isotopes of bromine, carbon, oxygen and a third goal of this study has been the application of computer modeling to the two-step enrichment process. Experimental measurements define as many as possible of the critical photophysical and chemical parameters required by an ab initio computer model of the enrichment process. Progress toward these goals has been …
Date: March 25, 1992
Creator: Zittel, P. F.
System: The UNT Digital Library
Experimental and computer modeling studies of isotopically selective two-step laser photodissociation of small molecules (open access)

Experimental and computer modeling studies of isotopically selective two-step laser photodissociation of small molecules

The approach to laser isotope separation taken in this study is based on isotopically selective, two-step, laser photodissociation of small molecules. A primary goal of this study is the measurement of fundamental molecular processes which control the two-step, photodissociative isotope enrichment process. This objective has led to experimental measurements of uv photodissociation cross sections for vibrationally excited states of several small molecules, including the first cross section reported for any neutral molecule in a specific, excited vibrational state. A second goal of this study has been the laboratory demonstration of isotope enrichment for isotopes of practical interest and for processes with a potential for larger scale production. Where possible, efforts have focussed on the separation of middle isotopes, such as {sup 17}O and {sup 33}S, which are expensive and difficult to separate using other techniques. Considerable success has been achieved in demonstrating the enrichment of isotopes of bromine, carbon, oxygen and a third goal of this study has been the application of computer modeling to the two-step enrichment process. Experimental measurements define as many as possible of the critical photophysical and chemical parameters required by an ab initio computer model of the enrichment process. Progress toward these goals has been …
Date: March 25, 1992
Creator: Zittel, P.F.
System: The UNT Digital Library