Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes. Final report (open access)

Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes. Final report

Assignment of the vibrational modes Of Os{sub 2}(CO){sub 8}(CHCH{sub 3}) and Os(CO){sub 4}(C{sub 2}H{sub 4)} has given fingerprint vibrational spectra for the following species when chemisorbed on metal catalyst surfaces: ethylidene and ethylene bound in a metallacyclopropane mode. The formation and fragmentation of diosmacyclobutanes have been shown to involve slippage of the outgoing olefin onto a single osmium, and associative exchange of the olefin from that site. The incorporation of vinylcyclopropane without rearrangement has confirmed the absence of a diradical intermediate. The anomalous stability of the diosmacyclobutane derived from trans-2-butene has proven due to greater destabilization (by the substituent methyls) of the slipped intermediate than of the ground state. Reaction of an osmacyclobutane with 1,3- or 1,2-dienes (allenes) gives 1,2 rather than 1,4 addition to the diosmium unit. Treatment of Os(CO){sub 4}(C{sub 2}H{sub 4}) with triflic acid results in the formation of Os(CO){sub 4}(C{sub 2}H{sub 5})OTf. The authors have found that the reaction of an aryl iodine(III) reagent with propargyl stannanes or silanes results in o-iodo propargyl arenes.
Date: April 25, 1994
Creator: Norton, J. R.
System: The UNT Digital Library