MRI of Heterogeneous Hydrogenation Reactions Using Parahydrogen Polarization (open access)

MRI of Heterogeneous Hydrogenation Reactions Using Parahydrogen Polarization

The power of magnetic resonance imaging (MRI) is its ability to image the internal structure of optically opaque samples and provide detailed maps of a variety of important parameters, such as density, diffusion, velocity and temperature. However, one of the fundamental limitations of this technique is its inherent low sensitivity. For example, the low signal to noise ratio (SNR) is particularly problematic for imaging gases in porous materials due to the low density of the gas and the large volume occluded by the porous material. This is unfortunate, as many industrially relevant chemical reactions take place at gas-surface interfaces in porous media, such as packed catalyst beds. Because of this severe SNR problem, many techniques have been developed to directly increase the signal strength. These techniques work by manipulating the nuclear spin populations to produce polarized} (i.e., non-equilibrium) states with resulting signal strengths that are orders of magnitude larger than those available at thermal equilibrium. This dissertation is concerned with an extension of a polarization technique based on the properties of parahydrogen. Specifically, I report on the novel use of heterogeneous catalysis to produce parahydrogen induced polarization and applications of this new technique to gas phase MRI and the characterization …
Date: June 25, 2008
Creator: Burt, Scott R & Burt, Scott R.
System: The UNT Digital Library
Nuclear Decay Schemes of Some of the Isotopes of Tantalum (Master's Thesis) (open access)

Nuclear Decay Schemes of Some of the Isotopes of Tantalum (Master's Thesis)

This report discusses a nuclear spectroscopic study of the radiations resulting from the electron capture decay of Ta-176, Ta-177, and Ta-178, analyzing data of nuclear decay schemes.
Date: January 25, 1956
Creator: Felber, Frank Frederick, Jr.
System: The UNT Digital Library
Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling (open access)

Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published …
Date: May 25, 2011
Creator: Hamrick, Todd
System: The UNT Digital Library
Superconducting High Resolution Fast-Neutron Spectrometers (open access)

Superconducting High Resolution Fast-Neutron Spectrometers

Superconducting high resolution fast-neutron calorimetric spectrometers based on {sup 6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, {alpha}) reactions with fast neutrons in {sup 6}Li and {sup 10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k{sub B}T on the order of {mu}eV that serve as signal carriers, resulting in an energy resolution {Delta}E {approx} (k{sub B}T{sup 2}C){sup 1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB{sub 2} absorber using thermal neutrons from a {sup 252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in {sup 7}Li. Fast-neutron spectra obtained with a {sup 6}Li-enriched LiF absorber show an energy resolution of 16 …
Date: May 25, 2006
Creator: Hau, I D
System: The UNT Digital Library
Measurement of the single top production cross section in proton-antiproton collisions at 1.96 TeV (open access)

Measurement of the single top production cross section in proton-antiproton collisions at 1.96 TeV

This thesis describes a search for singly produced top quarks via an electroweak vertex in head-on proton-antiproton collisions at a center of mass energy of √s = 1.96 TeV. The analysis uses a total of 2.3 fb<sup>-1</sup> of data collected with the D0 detector at Fermilab, corresponding to two different run periods of the Tevatron collider. Two channels contribute to single top quark production at the Tevatron, the s-channel and the t-channel. In the s-channel, a virtual W boson is produced from the aniquilation of a quark and an antiquark and a top and a bottom quarks are produced from the W decay. The top quark decays almost exclusively into a W boson and a bottom quark. Final states are considered in which the W boson decays leptonically into an electron or a muon plus a neutrino. Thus, at the detector level, the final state characterizing the s-channel contains one lepton, missing energy accounting for the neutrino, and two jets from the two bottom quarks. In the t-channel, the final state has an additional jet coming from a light quark. Clearly, a precise reconstruction of the events requires a precise measurement of the energy of the jets. A multivariate technique, …
Date: March 25, 2010
Creator: Tanasijczuk, Andres Jorge
System: The UNT Digital Library
Experimental study of anti pn annihilation cross sections in anti pd interactions between 1.0 and 1.6 GeV/c (open access)

Experimental study of anti pn annihilation cross sections in anti pd interactions between 1.0 and 1.6 GeV/c

None
Date: April 25, 1974
Creator: Huesman, R.H.
System: The UNT Digital Library
Numerical studies of mass transfer and accretion in x-ray binary systems (open access)

Numerical studies of mass transfer and accretion in x-ray binary systems

None
Date: September 25, 1974
Creator: Alme, M.L.
System: The UNT Digital Library
The Chelate Compounds of Plutonium (open access)

The Chelate Compounds of Plutonium

None
Date: May 25, 1946
Creator: Wolter, F. J.
System: The UNT Digital Library
The VRFurnace: A Virtual Reality Application for Energy System Data Analysis (open access)

The VRFurnace: A Virtual Reality Application for Energy System Data Analysis

The VRFurnace is a unique VR application designed to analyze a complete coal-combustion CFD model of a power plant furnace. Although other applications have been created that analyze furnace performance, no other has included the added complications of particle tracking and the reactions associated with coal combustion. Currently the VRFurnace is a versatile analysis tool. Data translators have been written to allow data from most of the major commercial CFD software packages as well as standard data formats of hand-written code to be uploaded into the VR application. Because of this almost any type of CFD model of any power plant component can be analyzed immediately. The ease of use of the VRFurnace is another of its qualities. The menu system created for the application not only guides first time users through the various button combinations but it also helps the experienced user keep track of which tool is being used. Because the VRFurnace was designed for use in the C6 device at Iowa State University's Virtual Reality Applications Center it is naturally a collaborative project. The projection-based system allows many people to be involved in the analysis process. This type of environment opens the design process to not only …
Date: June 25, 2001
Creator: Johnson, Peter Eric
System: The UNT Digital Library
Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214 (open access)

Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H {parallel} c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to …
Date: June 25, 2001
Creator: Finnemore, Douglas K.
System: The UNT Digital Library
Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis (open access)

Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm{sup 2} for 40-{micro}m wells. This experimental set-up also can screen …
Date: May 25, 2001
Creator: Su, Hui
System: The UNT Digital Library
Evaluation of the {sup 4}I{sub 11/2} terminal level lifetime for several neodymium-doped laser crystals and glasses (open access)

Evaluation of the {sup 4}I{sub 11/2} terminal level lifetime for several neodymium-doped laser crystals and glasses

All models of lasing action require knowledge of the physical parameters involved, of which many can be measured or estimated. The value of the terminal level lifetime is an important parameter in modeling many high power laser systems since the terminal level lifetime can have a substantial impact on the extraction efficiency of the system. However, the values of the terminal level lifetimes for a number of important laser materials such as ND:YAG and ND:YLF are not well known. The terminal level lifetime, a measure of the time it takes for the population to drain out of the terminal (lower) lasing level, has values that can range from picoseconds to microseconds depending on the host medium, thus making it difficult to construct one definitive experiment for all materials. Until recently, many of the direct measurements of the terminal level lifetime employed complex energy extraction or gain recovery methods coupled with a numerical model which often resulted in large uncertainties in the measured lifetimes. In this report we demonstrate a novel and more accurate approach which employs a pump-probe technique to measure the terminal level lifetime of 16 neodymium-doped materials. An alternative yet indirect method, which is based on the ``Energy …
Date: April 25, 1995
Creator: Bibeau, C.
System: The UNT Digital Library
Study of the reaction $pi$$sup -$p $Yields$ eta n in the region of the N*(1688) (open access)

Study of the reaction $pi$$sup -$p $Yields$ eta n in the region of the N*(1688)

None
Date: March 25, 1975
Creator: Chaffee, R.B.
System: The UNT Digital Library
A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure. (open access)

A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure.

In 2009, the American Conference of Governmental Industrial Hygienists (ACGIH) reduced the Beryllium (Be) 8-hr Time Weighted Average Threshold Limit Value (TLV-TWA) from 2.0 {micro}g/m{sup 3} to 0.05 {micro}g/m{sup 3} with an inhalable 'I' designation in accordance with ACGIH's particle size-selective criterion for inhalable mass. Currently, per the Department of Energy (DOE) requirements, the Lawrence Livermore National Laboratory (LLNL) is following the Occupational Health and Safety Administration (OSHA) Permissible Exposure Limit (PEL) of 2.0 {micro}g/m{sup 3} as an 8-hr TWA, which is also the 2005 ACGIH TLV-TWA, and an Action Level (AL) of 0.2 {micro}g/m{sup 3} and sampling is performed using the 37mm (total dust) sampling method. Since DOE is considering adopting the newer 2009 TLV guidelines, the goal of this study was to determine if the current method of sampling using the 37mm (total dust) sampler would produce results that are comparable to what would be measured using the IOM (inhalable) sampler specific to the application of high energy explosive work at LLNL's remote experimental test facility at Site 300. Side-by-side personal sampling using the two samplers was performed over an approximately two-week period during chamber re-entry and cleanup procedures following detonation of an explosive assembly containing Beryllium (Be). …
Date: April 25, 2012
Creator: Carter, C. M.
System: The UNT Digital Library
Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams (open access)

Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the …
Date: May 25, 2012
Creator: Ratner, Daniel & /SLAC, /Stanford U.
System: The UNT Digital Library
Imaging of Phase Objects using Partially Coherent Illumination (open access)

Imaging of Phase Objects using Partially Coherent Illumination

None
Date: November 25, 2013
Creator: Ravizza, F. L.
System: The UNT Digital Library