The VRFurnace: A Virtual Reality Application for Energy System Data Analysis (open access)

The VRFurnace: A Virtual Reality Application for Energy System Data Analysis

The VRFurnace is a unique VR application designed to analyze a complete coal-combustion CFD model of a power plant furnace. Although other applications have been created that analyze furnace performance, no other has included the added complications of particle tracking and the reactions associated with coal combustion. Currently the VRFurnace is a versatile analysis tool. Data translators have been written to allow data from most of the major commercial CFD software packages as well as standard data formats of hand-written code to be uploaded into the VR application. Because of this almost any type of CFD model of any power plant component can be analyzed immediately. The ease of use of the VRFurnace is another of its qualities. The menu system created for the application not only guides first time users through the various button combinations but it also helps the experienced user keep track of which tool is being used. Because the VRFurnace was designed for use in the C6 device at Iowa State University's Virtual Reality Applications Center it is naturally a collaborative project. The projection-based system allows many people to be involved in the analysis process. This type of environment opens the design process to not only …
Date: June 25, 2001
Creator: Johnson, Peter Eric
System: The UNT Digital Library
Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214 (open access)

Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H {parallel} c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to …
Date: June 25, 2001
Creator: Finnemore, Douglas K.
System: The UNT Digital Library
Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis (open access)

Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm{sup 2} for 40-{micro}m wells. This experimental set-up also can screen …
Date: May 25, 2001
Creator: Su, Hui
System: The UNT Digital Library