Modeling Growth of Au-Cu Nanocrystalliine Coatings (open access)

Modeling Growth of Au-Cu Nanocrystalliine Coatings

The electrodeposition process parameters of current density, pulse duration, and cell potential affect both the structure and composition of the foils. The mechanism for nucleation and growth as determined from current transients yield relationships for nucleus density and nucleation rate. To develop an understanding of the role of the process parameters on grain size--as a design structural parameter to control strength, for example, a formulation is presented to model the affects of the deposition energetics on grain size and morphology. An activation energy for the deposition process is modeled that reveals different growth mechanisms, wherein nucleation and diffusion effects are each dominant as dependent upon pulse duration. A diffusion coefficient common for each of the pulsed growth modes demarcates an observed transition in growth from smooth to rough surfaces. Empirical relationships are developed that relate the parameters of the deposition process to the morphology and grain size at the nanoscale. Regimes for nanocrystalline growth include a short and long pulse mode, each with distinct activation energies. The long pulse has the additional contribution of bulk-like diffusion whereas the short pulse is limited to surface diffusion and nucleation. For either pulse condition, a transition from a rough (or nodular) growth to …
Date: September 22, 2005
Creator: Jankowski, Alan Frederic
System: The UNT Digital Library
Silicon-Germanium Films Deposited by Low Frequency PE CVD: Effect of H2 and Ar Dilution (open access)

Silicon-Germanium Films Deposited by Low Frequency PE CVD: Effect of H2 and Ar Dilution

We have studied structure and electrical properties of Si{sub 1-Y}Ge{sub Y}:H films deposited by low frequency PE CVD over the entire composition range from Y=0 to Y=1. The deposition rate of the films and their structural and electrical properties were measured for various ratios of the germane/silane feed gases and with and without dilution by Ar and by H{sub 2}. Structure and composition was studied by Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and Fourier transform infrared (FTIR) spectroscopy. Surface morphology was characterized by atomic force microscopy (AFM). We found: (1) The deposition rate increased with Y maximizing at Y=1 without dilution. (2) The relative rate of Ge and Si incorporation is affected by dilution. (3) Hydrogen preferentially bonds to silicon. (4) Hydrogen content decreases for increasing Y. In addition, optical measurements showed that as Y goes for 0 to 1, the Fermi level moves from mid gap to the conduction band edge, i.e. the films become more n-type. No correlation was found between the pre-exponential and the activation energy of conductivity. The behavior of the conductivity {gamma}-factor suggests a local minimum in the density of states at E {approx} 0.33 eV for the films grown with or …
Date: September 22, 2005
Creator: Kosarev, A; Torres, A; Hernandez, Y; Ambrosio, R; Zuniga, C; Felter, T E et al.
System: The UNT Digital Library
Mu B-Driven Electroweak Symmetry Breaking (open access)

Mu B-Driven Electroweak Symmetry Breaking

None
Date: September 22, 2005
Creator: Nomura, Yasunori; Poland, David & Tweedie, Brock
System: The UNT Digital Library
Hard X-ray and Hot Electron Environment in Vacuum Hohlraums at NIF (open access)

Hard X-ray and Hot Electron Environment in Vacuum Hohlraums at NIF

Time resolved hard x-ray images (hv > 9 keV) and time integrated hard x-ray spectra (hv = 18-150 keV) from vacuum hohlraums irradiated with four 351 nm wavelength NIF laser beams are presented as a function of hohlraum size and laser power and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (f{sub hot}) and a comparison to a filling model are presented.
Date: September 22, 2005
Creator: McDonald, J. W.; Suter, L. J.; Landen, O. L.; Foster, J. M.; Celeste, J. R.; Holder, J. P. et al.
System: The UNT Digital Library
Intermittent Elevated Radium Concentrations in Coastal Plain Groundwater of South Carolina, U.S.A. (open access)

Intermittent Elevated Radium Concentrations in Coastal Plain Groundwater of South Carolina, U.S.A.

To learn the cause of intermittent radium concentrations in groundwater of Coastal Plain aquifers, 31 groundwater wells in South Carolina, U.S.A. were sampled for radium and other geochemical parameters. Sediments cored from near the well screens were also sampled to examine any relationship between sediment properties and radium concentration in the groundwater. Elevated radium concentrations only occurred in groundwater with low electrical conductivity and pH values below 6.3. The adsorption edge for radium on hematite--a major surface active mineral in these aquifers--is at a pH value of about 6. Near this value, small changes in pH can result in significant adsorption or desorption of radium. In groundwater with initially low alkalinity, small intermittent decreases in partial pressure of carbon dioxide in groundwater cause decreases in pH and desorption of radium. The result is intermittent elevated radium concentrations.
Date: September 22, 2005
Creator: Denham, Miles; Millings, Margaret & Noonkester, Jay
System: The UNT Digital Library