JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data (open access)

JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.
Date: April 15, 2007
Creator: Hawthorne, Steven B.
System: The UNT Digital Library
Collaborative Research: Evolution of Pore Structure and Permeability of Rocks Under Hydrothermal Conditions (open access)

Collaborative Research: Evolution of Pore Structure and Permeability of Rocks Under Hydrothermal Conditions

The physical and transport properties of porous rocks can be altered by a variety of diagenetic, metamorphic, and tectonic processes, and the changes that result are of critical importance to such industrial applications as resource recovery, carbon dioxide sequestration, and waste isolation in geologic formations. These inter-relationships between rocks, pore fluids, and deformation are also the key to understanding many natural processes, including: dynamic metamorphism, fault mechanics, fault stability, and pressure solution deformation. Here, we propose work to investigate the changes of permeability and pore geometry owing to inelastic deformation by solution-transfer, brittle fracturing, and dislocation creep. The work would study the relationship of deformation and permeability reduction in fluid-filled quartz and calcite rocks and investigate the effects of loading configuration on the evolution of porosity and permeability under hydrothermal conditions. We would use a combination of techniques, including laboratory experiments, numerical calculations, and observations of rock microstructure. The laboratory experiments provide mechanical and transport data under conditions that isolate each particular mechanism. Our apparatus are designed to provide simultaneous measurements of pore volume, permeability, axial and volumetric strain rates while being loaded under isostatic or conventional triaxial loading. Temperatures up to 1400 K may be obtained, while confining pressures …
Date: April 15, 2007
Creator: Zhu, Wenlu & Evans, J. Brian
System: The UNT Digital Library