Thermochemical decomposition and isomerization of polysilacyclodialkynes and thermochemical and photochemical decomposition of cyclopolysilylketenes (open access)

Thermochemical decomposition and isomerization of polysilacyclodialkynes and thermochemical and photochemical decomposition of cyclopolysilylketenes

Kinetic data for elimination of silylene supports formation of a ``tighter`` transition state, indicating a silacyclopropene intermediate. This extends the silacyclopropene mechanism to the cyclicdialkyne system and validates the consistency of the mechanism for silylakynes, in general. Investigation into the other possible silacyclopropene product established the instability of the product. The work with silylketenes proved that an inherent difference exists between reactivity of monosilyl-substituted ketenes and polysilyl-substituted ketenes. Although the mechanism for thermal decomposition of bis(silyl)ketenes can be modified to account for the unexpected silylene elimination products, reasons for the difference are limited to speculation. The photochemistry of silylketenes has not been previously studied, so a model system does not exist for comparison with our polysilylketene work. The photochemical experimentation suggests that the photochemistry and thermochemistry of polysilylketenes is not the same. A more extensive study of the mechanism of the systems covered in this research as well as with monosilyl-substituted systems is needed.
Date: May 10, 1994
Creator: Altman, L. B.
System: The UNT Digital Library
Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk (open access)

Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk

By definition a plasma is an electrically conducting gaseous mixture containing a significant concentration of cations and electrons. The Inductively Coupled Plasma (ICP) is an electrodeless discharge in a gas at atmospheric pressure. This discharge is an excellent one for vaporizing, atomizing, and ionizing elements. The early development of the ICP began in 1942 by Babat and then by Reed in the early 1960s. This was then followed by the pioneering work of Fassel and coworkers in the late 1960s. Commercial ICP spectrometers were introduced in the mid 1970s. A major breakthrough in the area of ICP took place in the early 1980s when the ICP was shown to be an excellent ion source for mass spectrometry.
Date: December 10, 1999
Creator: Amad, Ma'an Hazem
System: The UNT Digital Library
A Measurement of the Rate of Muon Capture in Hydrogen Gas andDetermination of the Proton's Induced Pseudoscalar Coupling gP (open access)

A Measurement of the Rate of Muon Capture in Hydrogen Gas andDetermination of the Proton's Induced Pseudoscalar Coupling gP

This dissertation describes a measurement of the rate ofnuclear muon capture by the proton, performed by the MuCap Collaborationusing a new technique based on a time projection chamber operating inultraclean, deuterium-depleted hydrogen gas at room temperature and 1 MPapressure. The hydrogen target's low gas density of 1 percent compared toliquid hydrogen is key to avoiding uncertainties that arise from theformation of muonic molecules. The capture rate was obtained from thedifference between the mu- disappearance rate in hydrogen--as determinedfrom data collected in the experiment's first physics run in fall2004--and the world averagefor the mu+ decay rate. After combining theresults of my analysis with the results from another independent analysisof the 2004 data, the muon capture rate from the hyperfine singlet groundstate of the mu-p atom is found to be Lambda_S = 725.0 +- 17.4 1/s, fromwhich the induced pseudoscalar coupling of the nucleon, gP(q2 = -0.88m2mu)= 7.3 +- 1.1, is extracted. This result for gP is consistent withtheoretical predictions that are based on the approximate chiral symmetryof QCD.
Date: July 10, 2007
Creator: Banks, Thomas Ira
System: The UNT Digital Library
The Fluidized Condenser (open access)

The Fluidized Condenser

None
Date: May 10, 1952
Creator: Beck, Curt B.; Canby, Thomas D. & Zonis, Irwin S.
System: The UNT Digital Library
Characterization of electrical resistivity as a function of temperature in the Mo-Si-B system (open access)

Characterization of electrical resistivity as a function of temperature in the Mo-Si-B system

Measurements of electrical resistivity as a function of temperature from 25 to 1,500 C were conducted on polycrystalline samples in the Mo-Si-B system. Single phase, or nearly single phase, samples were prepared for the following phases: Mo{sub 3}Si, Mo{sub 5}SiB{sub 2}, Mo{sub 5}Si{sub 3}B{sub x}, MoB, MoSi{sub 2}, and Mo{sub 5}Si{sub 3}. Thesis materials all exhibit resistivity values within a narrow range(4--22 x 10{sup {minus}7}{Omega}-m), and the low magnitude suggests these materials are semi-metals or low density of states metals. With the exception of MoSi{sub 2}, all single phase materials in this study were also found to have low temperature coefficient of resistivity(TCR) values. These values ranged from 2.10 x 10{sup {minus}10} to 4.74 x 10{sup {minus}10}{Omega}-m/{degree} C, and MoSi{sub 2} had a TCR of 13.77 x 10{sup {minus}10}{Omega}-m/{degree} C. The results from the single phase sample measurements were employed in a natural log rule-of-mixtures model to relate the individual phase resistivity values to those of multiphase composites. Three Mo-Si-B phase regions were analyzed: the binary Mo{sub 5}Si{sub 3}-MoSi{sub 2} system, the ternary phase field Mo{sub 5}Si{sub 3}B{sub x}MoB-MoSi{sub 2}, and the Mo{sub 3}Si-Mo{sub 5}SiB{sub 2}-Mo{sub 5} Si{sub 3}B{sub x} ternary region. The experimental data for samples in each of …
Date: December 10, 1999
Creator: Beckman, Sarah E.
System: The UNT Digital Library
Measurement of Branching Fractions and CP-Violating Asymmetries in B0 to K0K0bar and B+ to K0barK+ Decays at the BaBar Experiment (open access)

Measurement of Branching Fractions and CP-Violating Asymmetries in B0 to K0K0bar and B+ to K0barK+ Decays at the BaBar Experiment

Over the last few years, the B factories have established the Cabbibo-Kobayashi-Maskawa mechanism of CP violation in the Standard Model through the study of the decays of B mesons. The focus of Belle and BaBar has now expanded to the search for signatures of new physics beyond the Standard Model, particularly through examination of flavor-changing neutral-current transitions, which proceed through diagrams involving virtual loops. These decays are suppressed in the Standard Model, increasing sensitivity to new-physics effects but decreasing branching fractions. Exploiting large and growing datasets, BaBar and Belle have made many measurements in loop decays where a b quark transitions to an s quark, observing hints of possible deviations from Standard Model expectations in CP-violating measurements.
Date: July 10, 2007
Creator: Biesiada, Jedrzej
System: The UNT Digital Library
RESONANCE PRODUCTIONS IN K$sup +$p INTERACTIONS AT 4.6 GeV/c AND 9 GeV/c. (open access)

RESONANCE PRODUCTIONS IN K$sup +$p INTERACTIONS AT 4.6 GeV/c AND 9 GeV/c.

None
Date: August 10, 1970
Creator: Fu, Chumin
System: The UNT Digital Library
Scanning probe microscopies for the creation and characterization of interfacial architectures: Studies of alkyl thiolate monolayers at gold (open access)

Scanning probe microscopies for the creation and characterization of interfacial architectures: Studies of alkyl thiolate monolayers at gold

Scanning probe microscopy (SPM) offers access to the structural and material properties of interfaces, and when combined with macroscopic characterization techniques results in a powerful interfacial development tool. However, the relative infancy of SPM techniques has dictated that initial investigations concentrate on model interfacial systems as benchmarks for testing the control and characterization capabilities of SPM. One such family of model interfacial systems results from the spontaneous adsorption of alkyl thiols to gold. This dissertation examines the application of SPM to the investigation of the interfacial properties of these alkyl thiolate monolayers. Structural investigations result in a proposed explanation for counterintuitive correlations between substrate roughness and heterogeneous electron transfer barrier properties. Frictional measurements are used for characterization of the surface free energy of a series of end-group functionalized monolayers, as well as for the material properties of monolayers composed of varying chain length alkyl thiols. Additional investigations used these characterization techniques to monitor the real-time evolution of chemical and electrochemical surface reactions. The results of these investigations demonstrates the value of SPM technology to the compositional mapping of surfaces, elucidation of interfacial defects, creation of molecularly sized chemically heterogeneous architectures, as well as to the monitoring of surface reactions. However, …
Date: January 10, 1997
Creator: Green, J.
System: The UNT Digital Library
Optical Emission rom Electron Irradiated Thin Gold Foils (open access)

Optical Emission rom Electron Irradiated Thin Gold Foils

None
Date: September 10, 1963
Creator: Hammer, D. C.; Arakawa, E. T.; Emerson, L. C. & Birkhoff, R. D.
System: The UNT Digital Library
Investigation of the Charmless Decay B+- \rightarrow K+- K-+ K+- Using a Dalitz Plot Analysis at BaBar (open access)

Investigation of the Charmless Decay B+- \rightarrow K+- K-+ K+- Using a Dalitz Plot Analysis at BaBar

None
Date: June 10, 2013
Creator: Hart, Alistair Jepson & U., /Birmingham
System: The UNT Digital Library
Error Detection, Factorization and Correction for Multi-View Scene Reconstruction from Aerial Imagery (open access)

Error Detection, Factorization and Correction for Multi-View Scene Reconstruction from Aerial Imagery

Scene reconstruction from video sequences has become a prominent computer vision research area in recent years, due to its large number of applications in fields such as security, robotics and virtual reality. Despite recent progress in this field, there are still a number of issues that manifest as incomplete, incorrect or computationally-expensive reconstructions. The engine behind achieving reconstruction is the matching of features between images, where common conditions such as occlusions, lighting changes and texture-less regions can all affect matching accuracy. Subsequent processes that rely on matching accuracy, such as camera parameter estimation, structure computation and non-linear parameter optimization, are also vulnerable to additional sources of error, such as degeneracies and mathematical instability. Detection and correction of errors, along with robustness in parameter solvers, are a must in order to achieve a very accurate final scene reconstruction. However, error detection is in general difficult due to the lack of ground-truth information about the given scene, such as the absolute position of scene points or GPS/IMU coordinates for the camera(s) viewing the scene. In this dissertation, methods are presented for the detection, factorization and correction of error sources present in all stages of a scene reconstruction pipeline from video, in the …
Date: November 10, 2011
Creator: Hess-Flores, M.
System: The UNT Digital Library
The Higgs boson in the Standard Model theoretical constraints and a direct search in the wh channel at the Tevatron (open access)

The Higgs boson in the Standard Model theoretical constraints and a direct search in the wh channel at the Tevatron

We have presented results in two different yet strongly linked aspects of Higgs boson physics. We have learned about the importance of the Higgs boson for the fate of the Standard Model, being either only a theory limited to explaining phenomena at the electroweak scale or, if the Higgs boson lies within a mass range of 130 &lt; m<sub>H</sub> &lt; 160 GeV the SM would remain a self consistent theory up to highest energy scales O(m<sub>Pl</sub>). This could have direct implications on theories of cosmological inflation using the Higgs boson as the particle giving rise to inflation in the very early Universe, if it couples non-minimally to gravity, an effect that would only become significant at very high energies. After understanding the immense meaning of proving whether the Higgs boson exists and if so, at which mass, we have presented a direct search for a Higgs boson in associated production with a W boson in a mass range 100 &lt; m<sub>H</sub> &lt; 150 GeV. A light Higgs boson is favored regarding constraints from electroweak precision measurements. As a single analysis is not yet sensitive for an observation of the Higgs boson using 5.3 fb<sup>-1</sup> of Tevatron data, we set limits …
Date: September 10, 2010
Creator: Huske, Nils Kristian & (Germany)], Bielefeld Univ.
System: The UNT Digital Library
Atom transfer and rearrangement reactions catalyzed by methyltrioxorhenium, MTO (open access)

Atom transfer and rearrangement reactions catalyzed by methyltrioxorhenium, MTO

Methyltrioxorhenium (MTO) catalyzes the desulfurization of thiiranes by triphenylphosphine. Enormous enhancement in rate is observed when the catalyst is pretreated with hydrogen sulfide prior to the reaction. Using 2-mercaptomethylthiophenol as a ligand, the author synthesized several model complexes to study the mechanism of this reaction. With suitable model systems, they were able to show that the active catalyst is a Re(V) species. The reactions are highly stereospecific and very tolerant to functional groups. As part of the studies, he synthesized and crystallographically characterized the first examples of neutral terminal and bridging Re(V)sulfidocomplexes. Some of these complexes undergo fast oxygen atom transfer reactions with organic and inorganic oxidants. Studies on these model complexes led them to the discovery that MTO catalyzes the selective oxidation of thiols to disulfides. This report contains the Introduction; ``Chapter 6: Isomerization of Propargylic Alcohols to Enones and Enals Catalyzed by Methylrhenium Trioxide``; and Conclusions.
Date: May 10, 1999
Creator: Jacob, J.
System: The UNT Digital Library
A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report (open access)

A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any …
Date: December 10, 1991
Creator: Jacqmin, Robert P.
System: The UNT Digital Library
Maskless, resistless ion beam lithography (open access)

Maskless, resistless ion beam lithography

As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for …
Date: March 10, 2003
Creator: Ji, Qing
System: The UNT Digital Library
Analysis and design of a pyrotechnic-powered self-stopping actuator (open access)

Analysis and design of a pyrotechnic-powered self-stopping actuator

None
Date: January 10, 1975
Creator: Kopytoff, V.
System: The UNT Digital Library
Measurement of CP Violation in B0 to Phi K0, and of Branching Fraction and CP Violation in B0 to F0(980) K0(S) (open access)

Measurement of CP Violation in B0 to Phi K0, and of Branching Fraction and CP Violation in B0 to F0(980) K0(S)

The authors measure the time-dependent CP asymmetry parameters in B{sup 0} {yields} K{sup +}K{sup -}K{sup 0} based on a data sample of approximately 277 million B-meson pairs recorded at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II B-meson Factory at SLAC. They reconstruct two-body B{sup 0} decays to {phi}(1020)K{sub s}{sup 0} and {phi}(1020)K{sub L}{sup 0}. Using a time-dependent maximum-likelihood fit, they measure sin2{beta}{sub eff}({phi}K{sup 0}) = 0.48 {+-} 0.28 {+-} 0.10, and C({phi}K{sup 0}) = 0.16 {+-} 0.25 {+-} 0.09, where the first error is statistical, and the second is systematic. They also present measurements of the CP-violating asymmetries in the decay B{sup 0} {yields} f{sub 0}({yields} {pi}{sup +}{pi}{sup -})K{sub s}{sup 0}. The results are obtained from a data sample of 209 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays, also collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a time-dependent maximum-likelihood fit they measure the mixing-induced CP violation parameter S(f{sub 0}(980)K{sub S}{sup 0}) = - sin 2{beta}{sub eff}f{sub 0}(980)K{sub S}{sup 0} = -0.95{sub -0.23}{sup +0.32} {+-} 0.10 and the direct CP violation parameter C(f{sub 0}(980)K{sub S}{sup 0}) = - 0.24 {+-} 0.31 {+-} 0.15, where the first errors are statistical and …
Date: March 10, 2008
Creator: Kutter, Paul E.
System: The UNT Digital Library
The Structure of Jets at Hadron Colliders (open access)

The Structure of Jets at Hadron Colliders

None
Date: August 10, 2012
Creator: Larkoski, Andrew James
System: The UNT Digital Library
Dalitz Analysis of D0 to K0(S) Pi+ Pi- and Measurement of the CKM Angle Gamma in Charged B+- Decays to D(*) K+- Decays (open access)

Dalitz Analysis of D0 to K0(S) Pi+ Pi- and Measurement of the CKM Angle Gamma in Charged B+- Decays to D(*) K+- Decays

Despite more than thirty years having elapsed since the discovery of CP violation, our understanding about the source and the nature of this phenomenon is still very limited. In the standard model of particle physics, CP violation is due to the presence of an non-irreducible weak phase in the Cabibbo-Kabayashi-Maskawa(CKM) matrix. Up to now, all the experimental results are in good agreement with the standard model. However, it is important for us to over-constrain the CKM quark-mixing matrix and explore the possibility of new physics beyond the standard model. The B meson provides an ideal place to measure CP violation due to its heavy mass and potentially large CP-violating effects. In particular, the angle {gamma} of the Unitary Triangle relating the elements of the CKM matrix is extremely crucial in terms of CP violation and constraints on the new physics models. Various methods using B{sup -} {yields} D{sup 0}K{sup -} decays have been proposed to measure based on the interference between the V{sub cb} and V{sub ub} amplitudes. Despite the simple concept, the measurement turns out to be experimentally challenging due to the small branching fraction and the small value of {tau}{sub B}, the amplitude ratio between the two contributing …
Date: July 10, 2007
Creator: Lau, Yan-Pan
System: The UNT Digital Library
Structural studies of conformational changes of proteins upon phosphorylation: Structures of activated CheY, CheY-N16-FliM complex, and AAA {sup +} ATPase domain of NtrC1 in both inactive and active states (open access)

Structural studies of conformational changes of proteins upon phosphorylation: Structures of activated CheY, CheY-N16-FliM complex, and AAA {sup +} ATPase domain of NtrC1 in both inactive and active states

Protein phosphorylation is a general mechanism for signal transduction as well as regulation of cellular function. Unlike phosphorylation in eukaryotic systems that uses Ser/Thr for the sites of modification, two-component signal transduction systems, which are prevalent in bacteria, archea, and lower eukaryotes, use an aspartate as the site of phosphorylation. Two-component systems comprise a histidine kinase and a receiver domain. The conformational change of the receiver domain upon phosphorylation leads to signal transfer to the downstream target, a process that had not been understood well at the molecular level. The transient nature of the phospho-Asp bond had made structural studies difficult. The discovery of an excellent analogue for acylphosphate, BeF{sub 3}{sup -}, enabled structural study of activated receiver domains. The structure of activated Chemotaxis protein Y (CheY) was determined both by NMR spectroscopy and X-ray crystallography. These structures revealed the molecular basis of the conformational change that is coupled to phosphorylation. Phosphorylation of the conserved Asp residue in the active site allows hydrogen bonding of the T87 O{gamma} to phospho-aspartate, which in turn leads to the rotation of Y106 into the ''in'' position (termed Y-T coupling). The structure of activated CheY complexed with the 16 N-terminal residues of FliM (N16-FliM), …
Date: April 10, 2003
Creator: Lee, Seok-Yong
System: The UNT Digital Library
Wave propagation in ordered, disordered, and nonlinear photonic band gap materials (open access)

Wave propagation in ordered, disordered, and nonlinear photonic band gap materials

Photonic band gap materials are artificial dielectric structures that give the promise of molding and controlling the flow of optical light the same way semiconductors mold and control the electric current flow. In this dissertation the author studied two areas of photonic band gap materials. The first area is focused on the properties of one-dimensional PBG materials doped with Kerr-type nonlinear material, while, the second area is focused on the mechanisms responsible for the gap formation as well as other properties of two-dimensional PBG materials. He first studied, in Chapter 2, the general adequacy of an approximate structure model in which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers, or 6-functions, while the rest of the space is linear. This model had been used before, but its range of validity and the physical reasons for its limitations were not quite clear yet. He performed an extensive examination of many aspects of the model's nonlinear response and comparison against more realistic models with finite-width nonlinear layers, and found that the d-function model is quite adequate, capturing the essential features in the transmission characteristics. The author found one exception, coming from the deficiency of processing a rigid bottom …
Date: December 10, 1999
Creator: Lidorikis, Elefterios
System: The UNT Digital Library
Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems (open access)

Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry …
Date: May 10, 1999
Creator: Luong, E.
System: The UNT Digital Library
Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis (open access)

Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis

Millions of people suffering from diseases such as retinitis pigmentosa and macular degeneration are legally blind due to the loss of photoreceptor function. Fortunately a large percentage of the neural cells connected to the photoreceptors remain viable, and electrical stimulation of these cells has been shown to result in visual perception. These findings have generated worldwide efforts to develop a retinal prosthesis device, with the hope of restoring vision. Advances in microfabrication, integrated circuits, and wireless technologies provide the means to reach this challenging goal. This dissertation describes the development of innovative silicone-based microfabrication techniques for producing an implantable microelectrode array. The microelectrode array is a component of an epiretinal prosthesis being developed by a multi-laboratory consortium. This array will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces. Because the array is intended as a long-term implant, vital biological and physical design requirements must be met. A retinal implant poses difficult engineering challenges due to the size of the intraocular cavity and the delicate retina. Not only does it have to be biocompatible in terms of cytotoxicity and degradation, but it also has to be structurally …
Date: June 10, 2003
Creator: Maghribi, M
System: The UNT Digital Library
Evidence for neutrino oscillations in the Sudbury Neutrino Observatory (open access)

Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while {approx}2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 {+-} 0.065(stat.){+-}{sub 0.068}{sup 0.065}(sys.){+-}0.02(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, via the elastic-scattering interaction is [2.21{+-}0.22(stat.){+-}{sub 0.12}{sup 0.11}(sys.){+-}0.01(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, and via the neutral-current interaction is [5.05{+-}0.23(stat.){+-}{sub 0.37}{sup 0.31}(sys.){+-}0.06(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}. The electron-only flux seen via the charged-current interaction is more than 7{sigma} below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the …
Date: August 10, 2004
Creator: Marino, Alysia Diane
System: The UNT Digital Library