Quantitive DNA Fiber Mapping (open access)

Quantitive DNA Fiber Mapping

Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.
Date: January 28, 2008
Creator: Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F. & Weier, Heinz-Ulli G.
System: The UNT Digital Library
EVAPORITE MICROBIAL FILMS, MATS, MICROBIALITES AND STROMATOLITES (open access)

EVAPORITE MICROBIAL FILMS, MATS, MICROBIALITES AND STROMATOLITES

Evaporitic environments are found in a variety of depositional environments as early as the Archean. The depositional settings, microbial community and mineralogical composition vary significantly as no two settings are identical. The common thread linking all of the settings is that evaporation exceeds precipitation resulting in elevated concentrations of cations and anions that are higher than in oceanic systems. The Dead Sea and Storrs Lake are examples of two diverse modern evaporitic settings as the former is below sea level and the latter is a coastal lake on an island in the Caribbean. Each system varies in water chemistry as the Dead Sea dissolved ions originate from surface weathered materials, springs, and aquifers while Storrs Lake dissolved ion concentration is primarily derived from sea water. Consequently some of the ions, i.e., Sr, Ba are found at significantly lower concentrations in Storrs Lake than in the Dead Sea. The origin of the dissolved ions are ultimately responsible for the pH of each system, alkaline versus mildly acidic. Each system exhibits unique biogeochemical properties as the extreme environments select certain microorganisms. Storrs Lake possesses significant biofilms and stromatolitic deposits and the alkalinity varies depending on rainfall and storm activity. The microbial community …
Date: January 28, 2008
Creator: Brigmon, R; Penny Morris, P & Garriet Smith, G
System: The UNT Digital Library
Tribal Identifier Data Standard (open access)

Tribal Identifier Data Standard

This standard specifies the set of tribal names and codes necessary to constitute consistent and unambiguous identification of federally-recognized American Indian and Alaska Native entities.
Date: May 28, 2008
Creator: Exchange Network Leadership Council
System: The UNT Digital Library