Language

Water vulnerabilities for existing coal-fired power plants. (open access)

Water vulnerabilities for existing coal-fired power plants.

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their …
Date: August 19, 2010
Creator: Elcock, D.; Kuiper, J. & Division, Environmental Science
Object Type: Report
System: The UNT Digital Library
Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF). (open access)

Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF).

The High Flux Reactor (RHF) of the Laue Langevin Institute (ILL) based in Grenoble, France is a research reactor designed primarily for neutron beam experiments for fundamental science. It delivers one of the most intense neutron fluxes worldwide, with an unperturbed thermal neutron flux of 1.5 x 10{sup 15} n/cm{sup 2}/s in its reflector. The reactor has been conceived to operate at a nuclear power of 57 MW but currently operates at 52 MW. The reactor currently uses a Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most worldwide research and test reactors have already started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on a mixture of uranium and molybdenum (UMo) is expected to allow the conversion of compact high performance reactors like the RHF. This report presents the results of reactor design, performance and steady state safety analyses for conversion of the RHF from the use of HEU fuel to the use of UMo LEU fuel. The objective …
Date: August 19, 2010
Creator: Stevens, J.; A., Tentner.; Bergeron, A. & Division, Nuclear Engineering
Object Type: Report
System: The UNT Digital Library
ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector. (open access)

ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector.

Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more …
Date: September 30, 2010
Creator: Lell, R. M.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; Security, National & Engineering, Inst. of Physics and Power
Object Type: Report
System: The UNT Digital Library
Fuel cycle analysis of once-through nuclear systems. (open access)

Fuel cycle analysis of once-through nuclear systems.

Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some …
Date: August 10, 2010
Creator: Kim, T. K.; Taiwo, T. A. & Division, Nuclear Engineering
Object Type: Report
System: The UNT Digital Library
Water management technologies used by Marcellus Shale Gas Producers. (open access)

Water management technologies used by Marcellus Shale Gas Producers.

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.
Date: July 30, 2010
Creator: Veil, J. A. & Division, Environmental Science
Object Type: Report
System: The UNT Digital Library
Th/U-233 multi-recycle in PWRs. (open access)

Th/U-233 multi-recycle in PWRs.

The use of thorium in current or advanced light water reactors (LWRs) has been of interest in recent years. These interests have been associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages of the utilization of thorium in the fuel cycle. Various options have been considered for the use of thorium in the LWR fuel cycle including: (1) its use in a once-through fuel cycle to replace non-fissile uranium or to extend fuel burnup due to its attractive fertile material conversion, (2) its use for fissile plutonium burning in limited recycle cores, and (3) its advantage in limiting the transuranic elements to be disposed off in a repository (if only Th/U-233 fuel is used). The possibility for thorium utilization in multirecycle system has also been considered by various researchers, primarily because of the potential for near breeders with Th/U-233 in the thermal energy range. The objective of this project is to evaluate the potential of the Th/U-233 fuel multirecycle in current LWRs, with focus this year on pressurized water reactors (PWRs). In this work, approaches for ensuring a sustainable multirecycle without the need for external source of makeup fissile material have been investigated. The intent …
Date: September 7, 2010
Creator: Yun, D.; Kim, T. K.; Taiwo, T. A. & Division, Nuclear Engineering
Object Type: Report
System: The UNT Digital Library
Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 . (open access)

Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results …
Date: May 13, 2010
Creator: LaFreniere, L. M. & Division, Environmental Science
Object Type: Report
System: The UNT Digital Library
Well-To-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles. (open access)

Well-To-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles.

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission …
Date: June 14, 2010
Creator: Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M. et al.
Object Type: Report
System: The UNT Digital Library
Vehicle Technologies Program Government Performance and Results Act (GPRA) Report for Fiscal Year 2014 (open access)

Vehicle Technologies Program Government Performance and Results Act (GPRA) Report for Fiscal Year 2014

None
Date: July 15, 2013
Creator: Stephens, T. S.; Birky, A. K. & Ward, J.
Object Type: Report
System: The UNT Digital Library
Summary report on liquid-liquid contactor scoping experiments and validation test case definition (open access)

Summary report on liquid-liquid contactor scoping experiments and validation test case definition

None
Date: January 9, 2013
Creator: Wardle, K.E. (Chemical Sciences and Engineering Division)
Object Type: Report
System: The UNT Digital Library
Impact of future climate variability on ERCOT thermoelectric power generation (open access)

Impact of future climate variability on ERCOT thermoelectric power generation

None
Date: February 8, 2013
Creator: Yan, Y. E.; Tidwell, V. C.; King, C. W. & Cook, M. A.
Object Type: Report
System: The UNT Digital Library
Petascale, Adaptive Cfd (ALCF) ESP Technical Report): ALCF-2 Early Science Program Technical Report (open access)

Petascale, Adaptive Cfd (ALCF) ESP Technical Report): ALCF-2 Early Science Program Technical Report

None
Date: May 13, 2013
Creator: Jansen, K.E.; Rasquin, M. (LCF) & Boulder), (University of Colorado
Object Type: Report
System: The UNT Digital Library
Progress report on dynamic simulation of the Sandia small-scale supercritical carbon dioxide brayton cycle test loop with the ANL plant dynamics code (open access)

Progress report on dynamic simulation of the Sandia small-scale supercritical carbon dioxide brayton cycle test loop with the ANL plant dynamics code

None
Date: October 18, 2012
Creator: Moisseytsev, A. & Sienicki, J. J. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
Uptakes of CS and SR on San Joaquin Soil Measured Following Astm Method c1733. (open access)

Uptakes of CS and SR on San Joaquin Soil Measured Following Astm Method c1733.

Series of tests were conducted following ASTM Standard Procedure C1733 to evaluate the repeatability of the test and the effects of several test parameters, including the solution-to-soil mass ratio, test duration, pH, and the concentrations of contaminants in the solution. This standard procedure is recommended for measuring the distribution coefficient (K{sub d}) of a contaminant in a specific soil/groundwater system. One objective of the current tests was to identify experimental conditions that can be used in future interlaboratory studies to determine the reproducibility of the test method. This includes the recommendation of a standard soil, the range of contaminant concentrations and solution matrix, and various test parameters. Quantifying the uncertainty in the distribution coefficient that can be attributed to the test procedure itself allows the differences in measured values to be associated with differences in the natural systems being studied. Tests were conducted to measure the uptake of Cs and Sr dissolved as CsCl and Sr(NO{sub 3}){sub 2} in a dilute NaHCO{sub 3}/SiO{sub 2} solution (representing contaminants in a silicate groundwater) by a NIST standard reference material of San Joaquin soil (SRM 2709a). Tests were run to measure the repeatability of the method and the sensitivity of the test response …
Date: April 4, 2012
Creator: Ebert, W.L. & Petri, E.T. (Chemical Sciences and Engineering Division)
Object Type: Report
System: The UNT Digital Library
Well-To-Wheels Analysis of Fast Pyrolysis Pathways With the GREET Model. (open access)

Well-To-Wheels Analysis of Fast Pyrolysis Pathways With the GREET Model.

The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. At one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% …
Date: December 1, 2011
Creator: Han, J.; Elgowainy, A.; Palou-Rivera, I.; Dunn, J.B. & Wang, M.Q. (Energy Systems)
Object Type: Report
System: The UNT Digital Library
Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model. (open access)

Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. …
Date: December 14, 2011
Creator: Han, J.; Mintz, M. & Wang, M. (Energy Systems)
Object Type: Report
System: The UNT Digital Library
Impact of Plate Size on Peak Cladding Strain. (open access)

Impact of Plate Size on Peak Cladding Strain.

None
Date: August 9, 2013
Creator: Mohamed, W.M.F. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
Final work plan: environmental site investigation at Sylvan Grove, Kansas. (open access)

Final work plan: environmental site investigation at Sylvan Grove, Kansas.

In 1998, carbon tetrachloride was found above the maximum contaminant level (MCL) of 5 {micro}g/L in groundwater from one private livestock well at Sylvan Grove, Kansas, by the Kansas Department of Health and Environment (KDHE). The 1998 KDHE sampling was conducted under the U.S. Department of Agriculture (USDA) private well sampling program. The Commodity Credit Corporation (CCC), a USDA agency, operated a grain storage facility in Sylvan Grove from 1954 to1966. Carbon tetrachloride is the contaminant of primary concern at sites associated with former CCC/USDA grain storage operations. Sylvan Grove is located in western Lincoln County, approximately 60 mi west of Salina (Figure 1.1). To determine whether the former CCC/USDA facility at Sylvan Grove is a potential contaminant source and its possible relationship to the contamination in groundwater, the CCC/USDA has agreed to conduct an investigation, in accordance with the Intergovernmental Agreement between the KDHE and the Farm Service Agency (FSA) of the USDA. This Work Plan presents historical data related to previous investigations, grain storage operations, local private wells and public water supply (PWS) wells, and local geologic and hydrogeologic conditions at Sylvan Grove. The findings from a review of all available documents are discussed in Section 2. On …
Date: July 15, 2012
Creator: Lafreniere, L. M.
Object Type: Report
System: The UNT Digital Library
OECD MCCI project final report, February 28, 2006. (open access)

OECD MCCI project final report, February 28, 2006.

Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
SHARP Assembly-Scale Multiphysics Demonstration Simulations. (open access)

SHARP Assembly-Scale Multiphysics Demonstration Simulations.

None
Date: October 2, 2013
Creator: Tautges, T. J.; Fischer, P.; Grindeanu, I.; Jain, R.; Mahadevan, V.; Obabko, A. et al.
Object Type: Report
System: The UNT Digital Library
Status report on improved understanding of creep-fatigue damage in advanced materials. (open access)

Status report on improved understanding of creep-fatigue damage in advanced materials.

None
Date: August 14, 2012
Creator: Li, M.; Majumdar, S.; Soppet, W. K.; Rink, D. & Natesan, K.
Object Type: Report
System: The UNT Digital Library
A user's guide to the PLTEMP/ANL code. (open access)

A user's guide to the PLTEMP/ANL code.

PLTEMP/ANL V4.1 is a FORTRAN program that obtains a steady-state flow and temperature solution for a nuclear reactor core, or for a single fuel assembly. It is based on an evolutionary sequence of ''PLTEMP'' codes in use at ANL for the past 20 years. Fueled and non-fueled regions are modeled. Each fuel assembly consists of one or more plates or tubes separated by coolant channels. The fuel plates may have one to five layers of different materials, each with heat generation. The width of a fuel plate may be divided into multiple longitudinal stripes, each with its own axial power shape. The temperature solution is effectively 2-dimensional. It begins with a one-dimensional solution across all coolant channels and fuel plates/tubes within a given fuel assembly, at the entrance to the assembly. The temperature solution is repeated for each axial node along the length of the fuel assembly. The geometry may be either slab or radial, corresponding to fuel assemblies made of a series of flat (or slightly curved) plates, or of nested tubes. A variety of thermal-hydraulic correlations are available with which to determine safety margins such as Onset-of-Nucleate boiling (ONB), departure from nucleate boiling (DNB), and onset of flow …
Date: July 5, 2011
Creator: Kalimullah, M. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
Used Fuel Disposition Campaign - Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys (open access)

Used Fuel Disposition Campaign - Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys

None
Date: October 9, 2013
Creator: Billone, M.C.; Burtseva, T.A.; Han, Z.; Liu, Y.Y. (Decision and Information Sciences) & NE), (
Object Type: Report
System: The UNT Digital Library
Impact of post-event avoidance behavior on commercial facilities sector venues-literature review. (open access)

Impact of post-event avoidance behavior on commercial facilities sector venues-literature review.

The terrorist attacks of September 11, 2001 (9/11), focused a great deal of interest and concern on how individual and social perceptions of risk change behavior and subsequently affect commercial sector venues. Argonne conducted a review of the literature to identify studies that quantify the direct and indirect economic consequences of avoidance behaviors that result from terrorist attacks. Despite a growing amount of literature addressing terrorism impacts, relatively little is known about the causal relationships between risk perception, human avoidance behaviors, and the economic effects on commercial venues. Nevertheless, the technical and academic literature does provide some evidence, both directly and by inference, of the level and duration of post-event avoidance behaviors on commercial venues. Key findings are summarized in this Executive Summary. Also included as an appendix is a more detailed summary table of literature findings reproduced from the full report.
Date: March 24, 2011
Creator: Samsa, M. E.; Baldwin, T. E.; Berry, M. S.; Guzowski, L. B.; Martinez-Moyano, I.; Nieves, A. L. et al.
Object Type: Report
System: The UNT Digital Library