Sensitivity and representativity analysis of past experiments with respect to ABTR system. (open access)

Sensitivity and representativity analysis of past experiments with respect to ABTR system.

A comprehensive validation analysis has been performed that incorporates representativity of multiple parameters, experiments, reference designs, and adjustment of the nuclear data. The work involves a new representativity study among selected reactor designs and several experiments. Application, using existing experiments, to reference design like the ABTR and the SFR has demonstrated that it is possible to achieve a significant reduction of uncertainty on the main integral parameters of interest for their neutronic design. This is possible when the set of available experiments are relevant (i.e. representative of the reference designs), of good quality (i.e. of reduced uncertainty on experimental results), and consistent (i.e. not providing conflictive information).
Date: August 29, 2007
Creator: Aliberti, G.; Palmiotti, G. & Salvatores, M.
System: The UNT Digital Library
Proceedings of the USNRC/EPRI/ANL heated crevice seminar. (open access)

Proceedings of the USNRC/EPRI/ANL heated crevice seminar.

An international Heated Crevice Seminar, sponsored by the Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Argonne National Laboratory, and the Electric Power Research Institute, was held at Argonne National Laboratory on October 7-11, 2002. The objective of the seminar was to provide a working forum for the exchange of information by contributing experts on current issues related to corrosion in heated crevices, particularly as it relates to the integrity of PWR steam generator tubes. Forty-five persons from six countries attended the seminar, including representatives from government agencies, private industry and consultants, government research laboratories, nuclear vendors, and electrical utilities. The seminar opened with keynote talks on secondary-side crevice environments associated with IGA and IGSCC of mill-annealed Alloy 600 steam generator tubes and the submodes of corrosion in heat transfer crevices. This was followed by technical sessions on (1) Corrosion in Crevice Geometries, (2) Experimental Methods, (3) Results from Experimental Studies, and (4) Modeling. The seminar concluded with a panel discussion on the present understanding of corrosive processes in heated crevices and future research needs.
Date: August 31, 2003
Creator: Park, J. Y.; Fruzzetti, K.; Muscara, J.; Diercks, D. R.; Technology, Energy; EPRI et al.
System: The UNT Digital Library
Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown. (open access)

Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown.

In summary, a scaling analysis of a water-cooled Reactor Cavity Cooling System (RCCS) system was performed based on generic information on the RCCS design of PBMR. The analysis demonstrates that the water-cooled RCCS can be simulated at the ANL NSTF facility at a prototypic scale in the lateral direction and about half scale in the vertical direction. Because, by necessity, the scaling is based on a number of approximations, and because no analytical information is available on the performance of a reference water-cooled RCCS, the scaling analysis presented here needs to be 'validated' by analysis of the steady state and transient performance of a reference water-cooled RCCS design. The analysis of the RCCS performance by CFD and system codes presents a number of challenges including: strong 3-D effects in the cavity and the RCCS tubes; simulation of turbulence in flows characterized by natural circulation, high Rayleigh numbers and low Reynolds numbers; validity of heat transfer correlations for system codes for heat transfer in the cavity and the annulus of the RCCS tubes; the potential of nucleate boiling in the tubes; water flashing in the upper section of the RCCS return line (during limiting transient); and two-phase flow phenomena in the …
Date: August 31, 2007
Creator: Tzanos, C. P. & Farmer, M. T.
System: The UNT Digital Library
Final report: results of the 2007 investigation of potential contamination at the former CCC/USDA facility in Powhattan, Kansas. (open access)

Final report: results of the 2007 investigation of potential contamination at the former CCC/USDA facility in Powhattan, Kansas.

The 2007 investigation of carbon tetrachloride and chloroform contamination at Powhattan, Kansas, was conducted at the request of the Kansas Department of Health and Environment (KDHE 2006a). The Environmental Science Division of Argonne National Laboratory implemented the investigation on behalf of the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The primary purposes of the investigation were to evaluate potential contaminant source areas on the former CCC/USDA property, determine the horizontal and vertical extent of potential contamination, conduct groundwater monitoring, and provide recommendations for future action.
Date: August 15, 2008
Creator: LaFreniere, L. M.
System: The UNT Digital Library
Operation of the APS photoinjector drive laser system. (open access)

Operation of the APS photoinjector drive laser system.

The APS photoinjector drive laser system has been in operation since 1999 and is achieving a performance level exceeding the requirement of stable operation of the LEUTL FEL system. One remarkable number is the UV energy stability of better than 2% rms, sometimes less than 1% rms. This report summarizes the operation experience of the laser system and the improvements made along the way. We also outline the route of upgrade of the system and some frontier laser research and development opportunities in ultrabright electron beam generation.
Date: August 4, 2008
Creator: Li, Yuelin
System: The UNT Digital Library
Final work plan for targeted investigation at Hilton, Kansas. (open access)

Final work plan for targeted investigation at Hilton, Kansas.

This Work Plan outlines the scope of a targeted investigation to update the status of carbon tetrachloride contamination in groundwater associated with grain storage operations at Hilton, Kansas. The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility in Hilton during the 1950s and 1960s. At the time of the CCC/USDA operation in Hilton, grain storage facilities (CCC/USDA and private) were located along the both sides of the former Union Pacific railroad tracks (Figure 1.1). The main grain storage structures were on or near the railroad right-of-way. The proposed targeted investigation, to be conducted by Argonne National Laboratory on the behalf of CCC/USDA, will supplement Argonne's Phase I and Phase II investigations in 1996-1997. The earlier investigations erroneously focused on an area east of the railroad property where the CCC/USDA did not operate, specifically on a private grain storage facility. In addition, the investigation was limited in scope, because access to railroad property was denied (Argonne 1997a,b). The hydrogeologic system at Hilton is potentially complex.
Date: August 28, 2007
Creator: LaFreniere, L. M.
System: The UNT Digital Library
Report on thermal aging effects on tensile properties of advanced austenitic steels. (open access)

Report on thermal aging effects on tensile properties of advanced austenitic steels.

None
Date: August 23, 2012
Creator: Li, M.; Natesan, K.; Soppet, W.K.; Listwan, J.T. & Rink, D.L. (Nuclear Engineering Division)
System: The UNT Digital Library
Final Safety Analysis Report (FSAR) for Building 332, Increment III (open access)

Final Safety Analysis Report (FSAR) for Building 332, Increment III

This Final Safety Analysis Report (FSAR) supplements the Preliminary Safety Analysis Report (PSAR), dated January 18, 1974, for Building 332, Increment III of the Plutonium Materials Engineering Facility located at the Lawrence Livermore Laboratory (LLL). The FSAR, in conjunction with the PSAR, shows that the completed increment provides facilities for safely conducting the operations as described. These documents satisfy the requirements of ERDA Manual Appendix 6101, Annex C, dated April 8, 1971. The format and content of this FSAR complies with the basic requirements of the letter of request from ERDA San to LLL, dated March 10, 1972. Included as appendices in support of th FSAR are the Building 332 Operational Safety Procedure and the LLL Disaster Control Plan.
Date: August 31, 1977
Creator: Odell, B. N. & Toy, Jr., A. J.
System: The UNT Digital Library
Resolution of qualification issues for existing structural materials. (open access)

Resolution of qualification issues for existing structural materials.

None
Date: August 6, 2012
Creator: Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R. K. & Sham, T. -L.
System: The UNT Digital Library
YALINA Analytical Benchmark Analyses Using the Deterministic ERANOS Code System. (open access)

YALINA Analytical Benchmark Analyses Using the Deterministic ERANOS Code System.

The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for the transmutation of Minor Actinides (MA) and Long Lived Fission Products (LLFP). This report presents the analytical analyses obtained with the deterministic ERANOS code system for the YALINA facility within: (a) the collaboration between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research (JIPNR) Sosny of Belarus; and (b) the IAEA coordinated research projects for accelerator driven systems (ADS). This activity is conducted as a part of the Russian Research Reactor Fuel Return (RRRFR) Program and the Global Threat Reduction Initiative (GTRI) of DOE/NNSA.
Date: August 31, 2009
Creator: Gohar, Y. & Aliberti, G.
System: The UNT Digital Library
Vehicle Technologies Program Government Performance and Results Act (GPRA) Report for Fiscal Year 2012 (open access)

Vehicle Technologies Program Government Performance and Results Act (GPRA) Report for Fiscal Year 2012

The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the …
Date: August 10, 2012
Creator: Ward, J.; Stephens, T. S. & Birky, A. K.
System: The UNT Digital Library
VARI3D & PERSENT: Perturbation and Sensitivity Analysis (open access)

VARI3D & PERSENT: Perturbation and Sensitivity Analysis

None
Date: August 26, 2013
Creator: Smith, M. A.; Adams, C.; Yang, W. S. & Lewis, E. E. (Nuclear Engineering Division)
System: The UNT Digital Library
Summary data on cooling water use at utilities and nonutilities. (open access)

Summary data on cooling water use at utilities and nonutilities.

None
Date: August 25, 1999
Creator: Puder, M. G. & Veil, J. A.
System: The UNT Digital Library
Scalability of the natural convection shutdown heat removal test facility (NSTF) data to VHTR/NGNP RCCS designs. (open access)

Scalability of the natural convection shutdown heat removal test facility (NSTF) data to VHTR/NGNP RCCS designs.

Passive safety in the Very High Temperature Reactor (VHTR) is strongly dependent on the thermal performance of the Reactor Cavity Cooling System (RCCS). Scaled experiments performed in the Natural Shutdown Test Facility (NSTF) are to provide data for assessing and/or improving computer code models for RCCS phenomena. Design studies and safety analyses that are to support licensing of the VHTR will rely on these models to achieve a high degree of certainty in predicted design heat removal rate. To guide in the selection and development of an appropriate set of experiments a scaling analysis has been performed for the air-cooled RCCS option. The goals were to (1) determine the phenomena that dominate the behavior of the RCCS, (2) determine the general conditions that must be met so that these phenomena and their relative importance are preserved in the experiments, (3) identify constraints specific to the NSTF that potentially might prevent exact similitude, and (4) then to indicate how the experiments can be scaled to prevent distortions in the phenomena of interest. The phenomena identified as important to RCCS operation were also the subject of a recent PIRT study. That work and the present work collectively indicate that the main phenomena …
Date: August 7, 2007
Creator: Vilim, R .B. & Feldman, E. E.
System: The UNT Digital Library
Water vulnerabilities for existing coal-fired power plants. (open access)

Water vulnerabilities for existing coal-fired power plants.

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their …
Date: August 19, 2010
Creator: Elcock, D.; Kuiper, J. & Division, Environmental Science
System: The UNT Digital Library
Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF). (open access)

Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF).

The High Flux Reactor (RHF) of the Laue Langevin Institute (ILL) based in Grenoble, France is a research reactor designed primarily for neutron beam experiments for fundamental science. It delivers one of the most intense neutron fluxes worldwide, with an unperturbed thermal neutron flux of 1.5 x 10{sup 15} n/cm{sup 2}/s in its reflector. The reactor has been conceived to operate at a nuclear power of 57 MW but currently operates at 52 MW. The reactor currently uses a Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most worldwide research and test reactors have already started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on a mixture of uranium and molybdenum (UMo) is expected to allow the conversion of compact high performance reactors like the RHF. This report presents the results of reactor design, performance and steady state safety analyses for conversion of the RHF from the use of HEU fuel to the use of UMo LEU fuel. The objective …
Date: August 19, 2010
Creator: Stevens, J.; A., Tentner.; Bergeron, A. & Division, Nuclear Engineering
System: The UNT Digital Library
Fuel cycle analysis of once-through nuclear systems. (open access)

Fuel cycle analysis of once-through nuclear systems.

Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some …
Date: August 10, 2010
Creator: Kim, T. K.; Taiwo, T. A. & Division, Nuclear Engineering
System: The UNT Digital Library
Summary of Generation-IV transmutation impacts. (open access)

Summary of Generation-IV transmutation impacts.

An assessment of the potential role of Generation IV nuclear systems in an advanced fuel cycle has been performed. The Generation IV systems considered are the thermal-spectrum VHTR and SCWR, and the fast-spectrum GFR, LFR, and SFR. This report addresses the impact of each system on advanced fuel cycle goals, particularly related to waste management and resource utilization. The transmutation impact of each system was also assessed, along with variant designs for transuranics (TRU) burning. The base fuel cycle for the thermal reactor concepts (VHTR and SCWR) is a once-through fuel cycle using low-enriched uranium fuels. The higher burnup and thermal efficiency of the VHTR gives an advantage in terms of heavy-metal waste mass and volume, with lower decay heat and radiotoxicity of the spent fuel per electrical energy produced, compared to a PWR. Fuel utilization might, however, be worse compared to the PWR, because of the higher fuel enrichment essential to meeting the VHTR system design requirements. The SCWR concept also featured improved thermal efficiency; however, benefits are reduced by the lower fuel discharge burnup. The base fuel cycle for the fast reactor concepts (SFR, GFR, and LFR) is a closed fuel cycle using recycled TRU and depleted uranium …
Date: August 3, 2005
Creator: Taiwo, T. A. & Hill, R. N.
System: The UNT Digital Library
Impact of Plate Size on Peak Cladding Strain. (open access)

Impact of Plate Size on Peak Cladding Strain.

None
Date: August 9, 2013
Creator: Mohamed, W.M.F. (Nuclear Engineering Division)
System: The UNT Digital Library
Status report on improved understanding of creep-fatigue damage in advanced materials. (open access)

Status report on improved understanding of creep-fatigue damage in advanced materials.

None
Date: August 14, 2012
Creator: Li, M.; Majumdar, S.; Soppet, W. K.; Rink, D. & Natesan, K.
System: The UNT Digital Library