Fuel-cladding interaction layers in irradiated U-ZR and U-PU-ZR fuel elements. (open access)

Fuel-cladding interaction layers in irradiated U-ZR and U-PU-ZR fuel elements.

Argonne National Laboratory is developing an electrometallurgical treatment for spent nuclear fuels. The initial demonstration of this process is being conducted on U-Zr and U-Pu-Zr alloy fuel elements irradiated in the Experimental Breeder Reactor-II (EBR-II). The electrometallurgical treatment process extracts usable uranium from irradiated fuel elements and places residual fission products, actinides, process Zr, and cladding hulls (small segments of tubing) into two waste forms--a ceramic and a metal alloy. The metal waste form will contain the cladding hulls, Zr, and noble metal fission products, and it will be disposed of in a geologic repository. As a result, the expected composition of the waste form will need to be well understood. This report deals with the condition of the cladding, which will make up a large fraction of the metal waste form, after irradiation in EBR-II and before insertion into the electrorefiner. Specifically, it looks at layers that can be found on the inner surface of the cladding due to in-reactor interactions between the alloy fuel and the stainless steel cladding that occurs after the fuel has swelled and contacted the cladding. Many detailed examinations of fuel elements irradiated in EBR-II have been completed and are discussed in the context …
Date: January 23, 2006
Creator: Keiser, D. D.
System: The UNT Digital Library
Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development. (open access)

Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal …
Date: June 23, 2008
Creator: Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P. et al.
System: The UNT Digital Library
Summary of operations and performance of the Utica aquifer and North Lake Basin Wetlands restoration project in December 2007-November 2008. (open access)

Summary of operations and performance of the Utica aquifer and North Lake Basin Wetlands restoration project in December 2007-November 2008.

This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the fourth year of system operation, from December 1, 2007, until November 30, 2008. Performance in earlier years was reported previously (Argonne 2005, 2006, 2008). In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3). The report then describes groundwater production results (Section 4); groundwater treatment results (Section 5); and associated maintenance, system modifications, and costs during the review period (Section 6). Section 7 summarizes the present year of operation.
Date: January 23, 2009
Creator: LaFreniere, L. M.; Sedivy, R. A. & Division, Environmental Science
System: The UNT Digital Library
Model year 2010 Ford Fusion Level-1 testing report. (open access)

Model year 2010 Ford Fusion Level-1 testing report.

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine …
Date: November 23, 2010
Creator: Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H. & Systems, Energy
System: The UNT Digital Library
A survey on wind power ramp forecasting. (open access)

A survey on wind power ramp forecasting.

The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.
Date: February 23, 2011
Creator: Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences) & Porto), (INESC
System: The UNT Digital Library
OECD MCCI project final report, February 28, 2006. (open access)

OECD MCCI project final report, February 28, 2006.

Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
System: The UNT Digital Library
OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002. (open access)

OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series …
Date: May 23, 2011
Creator: Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschliman, R. W. & Basu, S.
System: The UNT Digital Library
OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003. (open access)

OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. The Melt Coolability and Concrete Interaction (MCCI) program is pursuing separate effect tests to examine the viability of the melt coolability mechanisms identified as part of the MACE program. These mechanisms include bulk cooling, water ingression, volcanic eruptions, and crust breach. At the second PRG meeting held at ANL on 22-23 October 2002, a preliminary design1 for a separate effects test to investigate the melt eruption cooling mechanism was presented for PRG review. At this meeting, NUPEC made several recommendations on the experiment approach aimed at optimizing the chances of achieving a floating crust boundary condition in this test. The principal recommendation was to incorporate a mortar sidewall liner into the test design, since data from the COTELS experiment program indicates that corium does not …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
System: The UNT Digital Library
OECD MCCI project Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-1 test data report : thermal hydraulic results. Rev. 0 September 20, 2002. (open access)

OECD MCCI project Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-1 test data report : thermal hydraulic results. Rev. 0 September 20, 2002.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench …
Date: May 23, 2011
Creator: Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
System: The UNT Digital Library
Transportation Research and Analysis Computing Center (TRACC) Year 5 Quarter 4 Progress Report. (open access)

Transportation Research and Analysis Computing Center (TRACC) Year 5 Quarter 4 Progress Report.

None
Date: January 23, 2012
Creator: Ley, H. (Energy Systems)
System: The UNT Digital Library
Report on thermal aging effects on tensile properties of advanced austenitic steels. (open access)

Report on thermal aging effects on tensile properties of advanced austenitic steels.

None
Date: August 23, 2012
Creator: Li, M.; Natesan, K.; Soppet, W.K.; Listwan, J.T. & Rink, D.L. (Nuclear Engineering Division)
System: The UNT Digital Library