Irradiation Experiment Conceptual Design Parameters for MITR LEU U-Mo Fuel Conversion (open access)

Irradiation Experiment Conceptual Design Parameters for MITR LEU U-Mo Fuel Conversion

None
Date: July 16, 2013
Creator: Wilson, E. H.; Newton, T. H.; Hu, L.; Dunn, F. E. (Nuclear Engineering Division) & Laboratory), (MIT Nuclear Reactor
System: The UNT Digital Library
Topical report : CFD analysis for the applicability of the natural convection shutdown heat removal test facility (NSTF) for the simulation of the VHTR RCCS. (open access)

Topical report : CFD analysis for the applicability of the natural convection shutdown heat removal test facility (NSTF) for the simulation of the VHTR RCCS.

The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The United States Department of Energy has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the …
Date: May 16, 2007
Creator: Tzanos, C. P. (Nuclear Engineering Division)
System: The UNT Digital Library
NEAMS Update. Quarterly Report for October - December 2011. (open access)

NEAMS Update. Quarterly Report for October - December 2011.

The Advanced Modeling and Simulation Office within the DOE Office of Nuclear Energy (NE) has been charged with revolutionizing the design tools used to build nuclear power plants during the next 10 years. To accomplish this, the DOE has brought together the national laboratories, U.S. universities, and the nuclear energy industry to establish the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program. The mission of NEAMS is to modernize computer modeling of nuclear energy systems and improve the fidelity and validity of modeling results using contemporary software environments and high-performance computers. NEAMS will create a set of engineering-level codes aimed at designing and analyzing the performance and safety of nuclear power plants and reactor fuels. The truly predictive nature of these codes will be achieved by modeling the governing phenomena at the spatial and temporal scales that dominate the behavior. These codes will be executed within a simulation environment that orchestrates code integration with respect to spatial meshing, computational resources, and execution to give the user a common 'look and feel' for setting up problems and displaying results. NEAMS is building upon a suite of existing simulation tools, including those developed by the federal Scientific Discovery through Advanced Computing and …
Date: February 16, 2012
Creator: Bradley, K. (Nuclear Engineering Division)
System: The UNT Digital Library
Structured hints : extracting and abstracting domain expertise. (open access)

Structured hints : extracting and abstracting domain expertise.

We propose a new framework for providing information to help optimize domain-specific application codes. Its design addresses problems that derive from the widening gap between the domain problem statement by domain experts and the architectural details of new and future high-end computing systems. The design is particularly well suited to program execution models that incorporate dynamic adaptive methodologies for live tuning of program performance and resource utilization. This new framework, which we call 'structured hints', couples a vocabulary of annotations to a suite of performance metrics. The immediate target is development of a process by which a domain expert describes characteristics of objects and methods in the application code that would not be readily apparent to the compiler; the domain expert provides further information about what quantities might provide the best indications of desirable effect; and the interactive preprocessor identifies potential opportunities for the domain expert to evaluate. Our development of these ideas is progressing in stages from case study, through manual implementation, to automatic or semi-automatic implementation. In this paper we discuss results from our case study, an examination of a large simulation of a neural network modeled after the neocortex.
Date: March 16, 2009
Creator: Hereld, M.; Stevens, R.; Sterling, T.; Gao, G. R.; Science, Mathematics and Computer; Tech., California Inst. of et al.
System: The UNT Digital Library
Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system. (open access)

Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the …
Date: May 16, 2008
Creator: Yang, W. S. & Lee, C. H. (Nuclear Engineering Division)
System: The UNT Digital Library