Recycling end-of-life vehicles of the future. Final CRADA report. (open access)

Recycling end-of-life vehicles of the future. Final CRADA report.

Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling …
Date: January 14, 2010
Creator: Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E. & Systems, Energy
System: The UNT Digital Library
Well-To-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles. (open access)

Well-To-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles.

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission …
Date: June 14, 2010
Creator: Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M. et al.
System: The UNT Digital Library
Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model. (open access)

Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. …
Date: December 14, 2011
Creator: Han, J.; Mintz, M. & Wang, M. (Energy Systems)
System: The UNT Digital Library
Status report on improved understanding of creep-fatigue damage in advanced materials. (open access)

Status report on improved understanding of creep-fatigue damage in advanced materials.

None
Date: August 14, 2012
Creator: Li, M.; Majumdar, S.; Soppet, W. K.; Rink, D. & Natesan, K.
System: The UNT Digital Library