Southwest Local Algebra Meeting 2023 (open access)

Southwest Local Algebra Meeting 2023

Data management plan for the grant, "Southwest Local Algebra Meeting 2023." No data will be collected or reported for this grant.
Date: 2023-01-15/2023-12-31
Creator: Conley, Charles H.
System: The UNT Digital Library
Structural and mechanistic studies of oxalate catabolism (open access)

Structural and mechanistic studies of oxalate catabolism

Data management plan for the grant, "Structural and mechanistic studies of oxalate catabolism." Biologically derived oxalic acid has been shown to have a negative impact on crop production and human health. Oxalate present in plant foods can decrease their nutritional value by binding to calcium and rendering that calcium unavailable for nutritional absorption. This project will study the structure and function of key enzymes in oxalate turnover to understand their biological functions and mechanisms, facilitating metabolic engineering of plants toward improving nutritional quality and production of plant derived foods.
Date: 2023-06-15/2026-05-31
Creator: Wang, Xiaoqiang
System: The UNT Digital Library
Using uncertainty quantification and machine learning techniques to study the evolution of odor capture (open access)

Using uncertainty quantification and machine learning techniques to study the evolution of odor capture

Data management plan for the research grant, "Using uncertainty quantification and machine learning techniques to study the evolution of odor capture." This research proposes the application of uncertainty quantification (UQ) and machine learning (ML) to a CFD model of odor capture to understand the role of hair-array morphology, kinematics, and fluid environment in odor capture. The combination of CFD modeling and UQ&ML techniques can map out the performance space under which these chemosensory hair arrays operate and the relative sensitivity of each parameter of odor capture to construct a global, quantitative understanding of how parameters control odor-capture performance. Furthermore, this analysis can eliminate parameters that have no influence on odor capture, extracting the root principles of odor capture and providing a more efficient way to construct bioinspired devices for chemical detection. This work is of interest to the Army for extracting design principles that can be used for biomimetic and/or bioinspired devices for sensing hazardous chemicals in the environment (e.g. explosives).
Date: 2022-04-01/2025-03-31
Creator: He, Yanyan & Waldrop, Lindsay D.
System: The UNT Digital Library