Degree Department

Characterization of UGT716A1 as a Multi-substrate UDP:Flavonoid Glucosyltransferase Gene in Ginkgo biloba (open access)

Characterization of UGT716A1 as a Multi-substrate UDP:Flavonoid Glucosyltransferase Gene in Ginkgo biloba

This article discusses the generation of a transcriptomic dataset of G. biloba leaf tissue by high-throughput RNA sequencing to better understand flavonoid glucosylation in G. biloba.
Date: December 7, 2017
Creator: Su, Xiaojia; Shen, Guoan; Di, Shaokang; Dixon, R. A. & Pang, Yongzhen
System: The UNT Digital Library
Development and use of a switchgrass (Panicum virgatum L.) transformation pipeline by the BioEnergy Science Center to evaluate plants for reduced cell wall recalcitrance (open access)

Development and use of a switchgrass (Panicum virgatum L.) transformation pipeline by the BioEnergy Science Center to evaluate plants for reduced cell wall recalcitrance

Article examines the creation of a transformation pipeline (TP) to produce plants with decreased recalcitrance and a laboratory information management system (LIMS) for data compilation from these plants. While many genes accepted into the TP resulted in transgenic switchgrass without modified lignin or biomass content, a group of genes with potential to improve lignocellulosic biofuel yields was identified. Results from transgenic lines targeting xyloglucan and lignin structure provide examples of the types of information available on switchgrass lines produced within BioEnergy Science Center (BESC).
Date: December 22, 2017
Creator: Nelson, Richard S.; Stewart, C. Neal; Gou, Jiqing; Holladay, Susan; Gallego-Giraldo, Lina; Flanagan, Amy et al.
System: The UNT Digital Library
Development and Use of a Switchgrass (Panicum Virgatum L.) Transformation Pipeline by the Bioenergy Science Center to Evaluate Plants for Reduced Cell Wall Recalcitrance (open access)

Development and Use of a Switchgrass (Panicum Virgatum L.) Transformation Pipeline by the Bioenergy Science Center to Evaluate Plants for Reduced Cell Wall Recalcitrance

This article provides information on the organization and outcomes of the BioEnergy Science Center Transformation Pipeline, and supplies useful information when developing coordinated, large-scale, multi-institutional reverse genetic pipelines to improve crop traits.
Date: December 22, 2017
Creator: Nelson, Richard S.; Stewart, C. Neal, Jr.; Gou, Jiqing; Holladay, Susan; Gallego-Giraldo, Lina; Flanagan, Amy et al.
System: The UNT Digital Library