10 Matching Results

Results open in a new window/tab.

Bifunctional activation of methane by bioinspired transition metal complexes. A simple methane protease model (open access)

Bifunctional activation of methane by bioinspired transition metal complexes. A simple methane protease model

Article modeling Metal-based bifunctional methane activators using density functional theory. The research yields insight into possible avenues for bio-inspired methane activators.
Date: February 15, 2021
Creator: Anderson, Mary E.; Marks, Michael B. & Cundari, Thomas R., 1964-
Object Type: Article
System: The UNT Digital Library
On counting cuspidal automorphic representations for GSp(4) (open access)

On counting cuspidal automorphic representations for GSp(4)

Article
Date: April 15, 2021
Creator: Roy, Manami; Schmidt, Ralf & Yi, Shaoyun
Object Type: Article
System: The UNT Digital Library
Development of Novel Approaches to Earth-abundant Methane Catalysis (open access)

Development of Novel Approaches to Earth-abundant Methane Catalysis

Data management plan for the grant "Development of Novel Approaches to Earth-abundant Methane Catalysis." Research on catalytic cycles for C–H activation and functionalization of light alkanes based on the CMD (concerted metalation deprotonation) mechanism will be modeled for Earth-abundant metal dicarboxylates and related complexes. The impact of inner and outer coordination sphere effects upon catalytic cycles for light alkane functionalization will be assessed using computational chemistry techniques. The aforementioned studies will be leveraged to identify promising, synthetically feasible lead catalysts for experimental collaborators.
Date: 2021-08-15/2024-08-14
Creator: Cundari, Thomas R., 1964-
Object Type: Text
System: The UNT Digital Library
NSFDEB-NERC: Collaborative Research: Wildlife corridors: do they work and who benefits? (open access)

NSFDEB-NERC: Collaborative Research: Wildlife corridors: do they work and who benefits?

Data management plan for the grant, "NSFDEB-NERC: Collaborative Research: Wildlife corridors: do they work and who benefits?" Research on the impact of wildlife corridors using genetics as the measure of effectiveness. The study will use 20 independent landscapes to quantify how corridor traits affect gene flow, and will use non-flying mammals as focal species because they are strongly affected by fragmentation. The research team hypothesizes (1) a strong non-linear decline in success (gene flow) with corridor length, reflecting the skewed distribution of dispersal distances within species; (2) success will drop steeply as corridor width falls below a threshold, with the threshold determined by species traits; and (3) species that are bigger, are habitat specialists, or have greater dispersal abilities (relative to brain size or reproductive rate) will benefit more from corridors. Testing these hypotheses will allow generalization to a wide range of mammal species not included in this project. It will use highly flexible Random Forest models to answer the overarching question: What landscape traits (e.g., corridor width, degree of human disturbance) and species traits (mobility, affinity to particular land cover types) are associated with effective corridors?
Date: 2021-01-15/2023-12-31
Creator: Gregory, Andrew
Object Type: Text
System: The UNT Digital Library
Vehicle emissions-exposure alters expression of systemic and tissue-specific components of the renin-angiotensin system and promotes outcomes associated with cardiovascular disease and obesity in wild-type C57BL/6 male mice (open access)

Vehicle emissions-exposure alters expression of systemic and tissue-specific components of the renin-angiotensin system and promotes outcomes associated with cardiovascular disease and obesity in wild-type C57BL/6 male mice

This article investigates the hypothesis that exposure to engine emissions increases systemic and local adipocyte RAS signaling, promoting the expression of factors involved in cardiovascular disease and obesity.
Date: April 15, 2021
Creator: Phipps, Benjamin L.; Suwannasual, Usa; Lucero, JoAnn; Mitchell, Nicholas A. & Lund, Amie K.
Object Type: Article
System: The UNT Digital Library
Generating pathogen- / pest-resistant non-GMO cotton through targeted genome editing of oxylipin signaling pathways (open access)

Generating pathogen- / pest-resistant non-GMO cotton through targeted genome editing of oxylipin signaling pathways

Data management plan for the research grant "Generating pathogen- / pest-resistant non-GMO cotton through targeted genome editing of oxylipin signaling pathways."
Date: 2021-01-15/2024-01-14
Creator: Ayre, Brian G.; McGarry, Roisin C. & Shah, Jyoti
Object Type: Text
System: The UNT Digital Library
Non-Genetic Inheritance of Hypoxia Tolerance in Fishes: Dynamics and Mechanisms (open access)

Non-Genetic Inheritance of Hypoxia Tolerance in Fishes: Dynamics and Mechanisms

Data management plan for the grant, "Non-Genetic Inheritance of Hypoxia Tolerance in Fishes: Dynamics and Mechanisms." Research quantifying the inheritance of tolerance to low oxygen in a model fish and then determine the tolerance mechanisms, at organismal to molecular levels, that are passed on from parents to their offspring. The investigators will not only focus on conventional, well-studied genetic mechanisms for inheritance, but will explore so-called “epigenetic” forms of inheritance that may transfer parental characteristics for only a generation or two. Such “temporary inheritance” might actually require less energy and be more beneficial to a species than the more permanent form of genetic inheritance. This project will quantify non-genetic inheritance of hypoxia tolerance in zebrafish as a model organism and then identify underlying mechanisms, at organismal to molecular levels, in parents and in their progeny. Specifically, this project will quantify non-genetically inherited traits that allow hypoxia tolerance, determine “wash-in” and “wash-out” (i.e., the dynamics) of hypoxia-tolerant phenotypes across multiple generations, and establish epigenetic mechanism(s) of non-genetic inheritance in subsequent generations. The information provided by this project will allow biologists to better predict, and perhaps even mitigate, the negative consequences of future episodes of low oxygen in rivers and lakes.
Date: 2021-06-15/2025-05-31
Creator: Burggren, Warren W. & Padilla, Pamela A.
Object Type: Text
System: The UNT Digital Library
Chemical-Guided Identification of Primary Metabolic Targets for Improvement of Hydroxy Fatty Acid Synthesis in Physaria fendleri (open access)

Chemical-Guided Identification of Primary Metabolic Targets for Improvement of Hydroxy Fatty Acid Synthesis in Physaria fendleri

Data management plan for the grant, "Chemical-Guided Identification of Primary Metabolic Targets for Improvement of Hydroxy Fatty Acid Synthesis in Physaria fendleri." Research on the identification of primary metabolic targets using chemical-guided identification. The first objective of this research is to conduct metabolomics analysis on P. fendleri embryos cultured with two identified chemical regulators of fatty acid metabolism. The second objective of this research is to generate a metabolic flux map of embryos treated with these regulatory compounds in order to determine how metabolic rates and carbon flow can be manipulated to improve HFA production in this species and increase its commercial viability. With properties that could replace imported castor oil, research on the crop in discussion is situated directly in the scope of the USDA-AFRI Education and Workforce Development goals.
Date: 2021-06-15/2023-06-14
Creator: Johnston, Christopher
Object Type: Text
System: The UNT Digital Library
Selective Noncatalytic Reduction of NOx Using Ammonium Sulfate (open access)

Selective Noncatalytic Reduction of NOx Using Ammonium Sulfate

Article discusses how ammonium sulfate (AS) is of interest as an additive in stationary combustion plants for the simultaneous control of NOx (through selective noncatalytic reduction, SNCR) and deposition and corrosion (through sulfation of alkali chlorides). The results indicated that sulfur from ammonium sulfate is mainly released as SO3, even though SO2 is detected in increasing concentrations at temperatures above 1000 °C. This is the accepted manuscript version of the published article.
Date: July 15, 2021
Creator: Krum, Kristian R. K.; Jensen, Martin; Li, Songgeng; Norman, Thomas; Marshall, Paul; Wu, Hao et al.
Object Type: Article
System: The UNT Digital Library
Kinetic fall-off behavior for the Cl + Furan-2,5-dione (C4H2O3, maleic anhydride) reaction (open access)

Kinetic fall-off behavior for the Cl + Furan-2,5-dione (C4H2O3, maleic anhydride) reaction

Article discusses how rate coefficients, k, for the gas-phase Cl + Furan-2,5-dione (C4H2O3, maleic anhydride) reaction were measured over the 15–500 torr (He and N2 bath gas) pressure range at temperatures between 283 and 323 K. An atmospheric degradation mechanism for C4H2O3 is proposed based on the observed product yields and theoretical calculations of ring-opening pathways and activation barrier energies at the CBS-QB3 level of theory. This is the accepted manuscript version of the published article.
Date: February 15, 2021
Creator: Chattopadhyay, Aparajeo; Gierczak, Tomasz; Marshall, Paul; Papadimitriou, Vassileios C. & Burkholder, James B. (James Bart), 1954-
Object Type: Article
System: The UNT Digital Library