87 Matching Results

Results open in a new window/tab.

Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure (open access)

Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure

Data management plan for the grant, "Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure." This project aims to develop a novel set of interactive training materials, including hands-on lecture modules, invited research talks from renowned researchers, and an interdisciplinary collaborative project in an intensive workshop, integrating a wide variety of advanced and inter-connected techniques employed by research workforce for deep learning (DL) systems in advanced GPU cyberinfrastructure (CI). Specifically, this project focuses on training seniors, graduate students, and researchers on how advanced GPU CI can be efficiently utilized and improved to enable high-performance DL systems for data-intensive DL applications in geoscience (GS) and computer science and engineering (CSE) research. The goal is to foster future CI users and contributors to adopt, develop, and improve advanced GPU CI for DL systems in their research.
Date: 2022-12-01/2024-11-30
Creator: Shu, Tong
Object Type: Text
System: The UNT Digital Library
Editorial: Superlubricity across the scales (open access)

Editorial: Superlubricity across the scales

Article talks about how while the idea of frictionless surfaces and the associated implications of vanishing energy losses during mechanical motion have been part of science fiction culture, scientists in the real world work toward realizing this ambitious goal that was once thought to be unattainable. The overarching goal of the research topic titled “Superlubricity Across the Scales” is to provide a snapshot of the latest developments in this rapidly accelerating field of research.
Date: October 26, 2022
Creator: Baykara, Mehmet Z.; Berman, Diana & Rosenkranz, Andreas
Object Type: Article
System: The UNT Digital Library
Biochar aerogel-based electrocatalyst towards efficient oxygen evolution in acidic media (open access)

Biochar aerogel-based electrocatalyst towards efficient oxygen evolution in acidic media

Article argues that traditional acidic oxygen evolution reaction (OER) electrocatalysts are more prone to be oxidized and corroded as results of unstable carrier structures and variable electronic states of active species, so a high-performing biochar aerogel (BA) based electrocatalyst was realistically designed and synthetized via joint utilization of the terrestrial lignin and seaweed polysaccharide as carbon sources. This work puts forward a novel and effective strategy towards the enhancement of the acidic OER process by rational regulations of the BA and the coupling effect in micro-interface.
Date: July 22, 2022
Creator: Hui, Bin; Chen, Hongjiao; Zhou, Chengfeng; Cai, Liping; Zhang, Kewei; Quan, Fengyu et al.
Object Type: Article
System: The UNT Digital Library
agroString: Visibility and Provenance through a Private Blockchain Platform for Agricultural Dispense towards Consumers (open access)

agroString: Visibility and Provenance through a Private Blockchain Platform for Agricultural Dispense towards Consumers

Article discusses the large quantities of farm and meat products that rot and are wasted if correct actions are not taken leading to serious health concerns if consumed. Because there is no proper system for tracking and communicating the status of goods to consumers, a right which according to the authors should be a given, they propose a method of increased communication using Corda private blockchain.
Date: October 27, 2022
Creator: Vangipuram, Sukrutha L. T.; Mohanty, Saraju P.; Kougianos, Elias & Ray, Chittaranjan
Object Type: Article
System: The UNT Digital Library
Stability and degradation in triple cation and methyl ammonium lead iodide perovskite solar cells mediated viaAu andAg electrodes (open access)

Stability and degradation in triple cation and methyl ammonium lead iodide perovskite solar cells mediated viaAu andAg electrodes

Article states that perovskite solar cells (PSCs), particularly based on the methyl ammonium lead iodide (MAPbI3) formulation, have been of intense interest for the past decade within the photovoltaics (PV) community, but their long-term stability under operational conditions and environmental storage are still prime challenges to be overcome towards their commercialization. The authors have conducted a comprehensive analysis on the impact of the electrode collector layer, specifically Ag and Au, on the degradation mechanism associated with the MAPbI3 and a triple cation absorber. The authors hypothesize the mechanism of degradation, arising from the Ag interaction with the absorber through the formation of AgI in the PSCs, leads to corrosion of the perovskite absorber, as opposed to the benign AuI when Au electrodes are used in the solar cell stack.
Date: September 3, 2022
Creator: Kakaraparthi, Kranthiraja; Parashar, Mritunjaya; Mehta, Ravindra K.; Aryal, Sujan; Temsal, Mahdi & Kaul, Anupama
Object Type: Article
System: The UNT Digital Library
Design of high SERS sensitive substrates based on branched Ti nanorods (open access)

Design of high SERS sensitive substrates based on branched Ti nanorods

Article reports a rational design of branched titanium (Ti) nanorods formed by glancing angle physical vapor deposition and their applications as substrates for surface-enhanced Raman scattering (SERS). The authors investigation provides a mechanism to fabricate sensitive SERS sensors of Ti nanorods that are known to be thermally and chemically stable and compatible with silicon-based electronics.
Date: July 8, 2022
Creator: Abayomi M. Yussuf, Nosirudeen; Li, Jianlin; Jung, Yung Joon & Huang, Hanchen
Object Type: Article
System: The UNT Digital Library
Friction stir welding of SS 316 LN and Nitronic 50 jacket sections for application in superconducting fusion magnet systems (open access)

Friction stir welding of SS 316 LN and Nitronic 50 jacket sections for application in superconducting fusion magnet systems

Article explores the possibility of using friction stir welding (FSW) to join jacket web sections of two nitrogen-containing stainless steels for housing internally cooled superconducting cables which are utilized to generate magnetic fields in tokamak type fusion reactor systems. It has been shown that the FSW fabricated SS 316 LN jackets possessed the required strength and magnetic properties critical to this application.
Date: July 16, 2022
Creator: Gaddam, Supreeth; Haridas, Ravi Sankar; Sanabria, Charlie; Tammana, Deepthi; Berman, Diana & Mishra, R. S.
Object Type: Article
System: The UNT Digital Library
Detection of DDoS Attack in Software-Defined Networking Environment and Its Protocol-wise Analysis using Machine Learning (open access)

Detection of DDoS Attack in Software-Defined Networking Environment and Its Protocol-wise Analysis using Machine Learning

Article describes how distributed-denial-of-service (DDoS) attacks can cause a great menace to numerous organizations and their stakeholders. The authors assert that the objective of this research work is to take into account a DDoS afflicted SDN specific dataset and detect the malicious traffic by using various machine learning algorithms namely., K-Nearest Neighbours, Logistic Regression, Multilayer Perceptron, Iterative Dichotomiser 3, and Stochastic Gradient Descent.
Date: January 10, 2022
Creator: Prasad, Ashwani; Prasad, Sanjana; Arockiasamy, Karmel; P, Karthika & Yuan, Xiaohui
Object Type: Article
System: The UNT Digital Library
Privacy-Preserving Object Detection with Secure Convolutional Neural Networks for Vehicular Edge Computing (open access)

Privacy-Preserving Object Detection with Secure Convolutional Neural Networks for Vehicular Edge Computing

Article discusses how with the wider adoption of edge computing services, intelligent edge devices, and high-speed V2X communication, compute-intensive tasks for autonomous vehicles, such as object detection using camera, LiDAR, and/or radar data, can be partially offloaded to road-side edge servers. The authors aim to address the privacy problem by protecting both vehicles' sensor data and the detection results.
Date: October 31, 2022
Creator: Bai, Tianyu; Fu, Song & Yang, Qing
Object Type: Article
System: The UNT Digital Library
Role of Artificial Intelligence for Analysis of COVID-19 Vaccination-Related Tweets: Opportunities, Challenges, and Future Trends (open access)

Role of Artificial Intelligence for Analysis of COVID-19 Vaccination-Related Tweets: Opportunities, Challenges, and Future Trends

Article states that vaccines, though reliable preventative measures for diseases, also raise public concerns; public apprehension and doubts challenge the acceptance of new vaccines including the COVID-19 vaccines. This study is the first attempt to review the role of AI approaches in COVID-19 vaccination-related sentiment analysis.
Date: September 5, 2022
Creator: Aljedaani, Wajdi; Saad, Eysha; Rustam, Furqan; de la Torre Díez, Isabel & Ashraf, Imran
Object Type: Article
System: The UNT Digital Library
Special Issue “Laser Powder Bed Fusion, Direct Energy Deposition and Hybrid Manufacturing of Metals and Alloys” (open access)

Special Issue “Laser Powder Bed Fusion, Direct Energy Deposition and Hybrid Manufacturing of Metals and Alloys”

Article describes hybrid additive manufacturing processes involve the use of different manufacturing techniques to fabricate net shape or near-net shape parts, with enhanced capabilities of heat dissipation, such as those needed in conformal molding, or requiring internal cooling systems, such as, for example, those seen in turbine blades, and for developing other components demanding free form fabrication methods. The combination of these AM processes with material removal processes, such as machining, is the core of the hybrid additive manufacturing concept, together with the full coupling of these processes in an integrated fashion.
Date: October 8, 2022
Creator: Siller Carrillo, Héctor Rafael
Object Type: Article
System: The UNT Digital Library
Experimental Validation of Diffraction Lithography for Fabrication of Solid Microneedles (open access)

Experimental Validation of Diffraction Lithography for Fabrication of Solid Microneedles

Article states that microneedles are highly sought after for medicinal and cosmetic applications. However, the current manufacturing process for microneedles remains complicated, hindering its applicability to a broader variety of applications. This experimental study enables the shapes and mechanical properties of the microneedles to be predicted in advance for mass production and wide practical use for biomedical or cosmetic applications.
Date: December 14, 2022
Creator: Tan, Jun Ying; Li, Yuanki; Chamani, Faraz; Tharzeen, Aabila; Prakash, Punit; Natarajan, Balasubramaniam et al.
Object Type: Article
System: The UNT Digital Library
Child Health and Human Development Extramural Research (open access)

Child Health and Human Development Extramural Research

Data management plan for the grant, "Child Health and Human Development Extramural Research." This study will use the genome-edited human induced pluripotent stem cell (hiPSC) with NOTCH1 knockout to recapitulate the genetic variants of NOTCH1 mutation in the Hypoplastic left heart syndrome (HLHS). It will use advances in the vascularized cardiac organoid directly differentiated from hiPSCs to replay the development and function of cardiomyocytes, endothelial cells, smooth muscle cells, and other cardiac cells in a defined 3D cell culture model by stencil-based micropatterning. It will elucidate the pathogenesis of cardiovascular underdevelopment and dysfunction found in HLHS with NOTCH1 mutation via the NOTCHDELTA/JAG ligand-receptor binding and multicellular crosstalk by single-cell RNA-seq and proteomics analysis.
Date: 2022-09-08/2025-08-31
Creator: Yang, Huaxiao
Object Type: Text
System: The UNT Digital Library
Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration (open access)

Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration

Data management plan for the grant, "Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration." The most prominent causative risk factor of glaucoma, the leading cause of irreversible blindness worldwide, is elevated intraocular pressure (IOP), which could deform the optic nerve head (ONH) and cause glaucomatous neurodegeneration. However, current glaucoma therapies that focus on lowering IOP do not stop vision loss effectively, and thus there is a pressing need to understand the mechanisms underlying glaucoma pathogenesis. In this project, we will develop a biomimetic 3-D ONH-on-a-chip system that closely mimics the key anatomical and pathophysiological characteristics of the native ONH to study astrocytic mechanisms of glaucoma pathogenesis, a missing link to develop efficacious therapies.
Date: 2022-09-30/2025-05-31
Creator: Yang, Yong
Object Type: Text
System: The UNT Digital Library

Plexcitonic interactions in spherical and bi-pyramidical Au nanoparticles with monolayer WSe₂

Article describes how plasmons associated with zero-dimensional (0D) metal nanoparticles and their synergistic interactions with excitons in two-dimensional (2D) semiconductors offer opportunities for remarkable spectral tunability not otherwise evident in the pristine parent materials, which necessitates an in-depth study elucidating the nature of the plasmonic and excitonic interactions, jointly referred to as plexcitons in order to understand the foundational aspects of the light–matter interactions in hybrid 0D–2D systems. The authors examine the plexcitonic interactions of van der Waals (vdWs) hybrid structures composed of 2D WSe2 and 0D Au nanoparticles (Au-NPs) in their spherical (Au-Sp) and bi-pyramidical (Au-BP) architectures, which demonstrates that geometry-mediated response of the AuNPs provides another degree of freedom to modulate the carrier photodynamics in WSe₂.
Date: November 15, 2022
Creator: Jayanand, Kishan & Kaul, Anupama
Object Type: Article
System: The UNT Digital Library