7 Matching Results

Results open in a new window/tab.

Engineering transformation pathways in an Al0.3CoFeNi complex concentrated alloy leads to excellent strength–ductility combination (open access)

Engineering transformation pathways in an Al0.3CoFeNi complex concentrated alloy leads to excellent strength–ductility combination

Article reports a novel multi-phase microstructure in a HEA/CCA similar to the microstructure observed in dual-phase stainless steel.
Date: July 2, 2020
Creator: Dasari, S.; Jagetia, Abhinav; Soni, V.; Gwalani, Bharat; Banerjee, Rajarshi & Gorsse, Stéphane
System: The UNT Digital Library
Microstructurally flexible high entropy alloys: Linkages between alloy design and deformation behavior (open access)

Microstructurally flexible high entropy alloys: Linkages between alloy design and deformation behavior

Article presents research where metastability based alloy design led to flexible microstructural evolution in which either thermodynamically stable γ-phase or unstable ε-phase was obtained at room temperature.
Date: July 19, 2020
Creator: Nene, Saurabh S.; Frank, M.; Agrawal, P.; Sinha, Subhasis; Liu, Kaimiao; Shukla, Shivakant et al.
System: The UNT Digital Library
Inks of dielectric h-BN and semiconducting WS₂ for capacitive structures with graphene (open access)

Inks of dielectric h-BN and semiconducting WS₂ for capacitive structures with graphene

This article presents dispersions of WS₂ and h-BN using cyclohexanone and terpineol as the solvent to subsequently print prototype capacitive nanodevices.
Date: July 30, 2020
Creator: Desai, Jay A.; Mazumder, Sangram; Hossain, Ridwan Fayaz & Kaul, Anupama
System: The UNT Digital Library
Inkjet-printed MoS₂-based field-effect transistors with graphene and hexagonal boron nitride inks (open access)

Inkjet-printed MoS₂-based field-effect transistors with graphene and hexagonal boron nitride inks

This article reports the design, fabrication, and characterization of an all inkjet-printed field-effect transistor (FET).
Date: July 10, 2020
Creator: Hossain, Ridwan F. & Kaul, Anupama
System: The UNT Digital Library
Prolate and oblate chiral liquid crystal spheroids (open access)

Prolate and oblate chiral liquid crystal spheroids

Article examining the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets. The reported structures and assemblies offer potential for applications in smart coatings, smart fabrics, and wearable sensors.
Date: July 10, 2020
Creator: Sadati, Monirosadat; Martínez-González, José A.; Zhou, Ye; Qazvini, Nader Taheri; Kurtenbach, Khia; Li, Xiao et al.
System: The UNT Digital Library
A New Cable-Less Seismograph with Functions of Real-Time Data Transmitting and High-Precision Differential Self-Positioning (open access)

A New Cable-Less Seismograph with Functions of Real-Time Data Transmitting and High-Precision Differential Self-Positioning

This article developed a new cable-less seismograph system, which can transmit seismic data in real-time and automatically perform high-precision differential self-positioning. Combining the ZigBee technology with the high-precision differential positioning module, this new seismograph system utilized the wireless personal area network (WPAN) and real-time kinematic (RTK) technologies to improve its on-site performances and to make the field quality control (QC) and self-positioning possible. With the advantages of low-cost, good scalability, and good compatibility, the proposed new cable-less seismograph system can improve the field working efficiency and data processing capability. It has potential applications in noise seismology and mobile seismic monitoring.
Date: July 19, 2020
Creator: Liu, Kang; You, Qingyu; Wang, Juan; Xu, Xiqiang; Shi, Pengcheng; Dai, Kaoshan et al.
System: The UNT Digital Library
Plasmon-resonance emission tailoring of “origami” graphene-covered photonic gratings (open access)

Plasmon-resonance emission tailoring of “origami” graphene-covered photonic gratings

Article focusing on the modification of optical properties through folding, or “origami,” of graphene covering a plasmonic metal channel grating. This work is especially critical to understanding tailored deep plasmon emission from geometrically-modulated conducting sheets such as graphene.
Date: July 16, 2020
Creator: Araki, Ken & Zhang, Richard Z.
System: The UNT Digital Library