RINGS: Mobility-driven Spectrum-Agile Resilient mmWave Communication Links for Unmanned Aerial Vehicle Traffic Management in the Sky (open access)

RINGS: Mobility-driven Spectrum-Agile Resilient mmWave Communication Links for Unmanned Aerial Vehicle Traffic Management in the Sky

Data management plan for the grant "RINGS: Mobility-driven Spectrum-Agile Resilient mmWave Communication Links for Unmanned Aerial Vehicle Traffic Management in the Sky." As the unmanned aviation industry moves towards Advanced Air Mobility (AAM) services, air taxis and air ambulances are expected to become a reality in near future. Handling such a high volume of unmanned air traffic requires innovative solutions for enhanced situational awareness in the airspace. The US Federal Aviation Federal Aviation Administration envisions air tracks specifically reserved for AAM vehicles at altitudes ranging from 500 ft to 2000 ft. Air tracks cross one another at intersections and vehicles may need to share the airspace with other manned and unmanned aerial vehicles. This requires coordination among the vehicles especially during close encounters. Such a coordination requires highly reliable communication links which serve as a substitute for traffic signals on the roads. This proposal addresses this key knowledge gap by investigating strategies for establishing reliable and robust Vehicle-to-Vehicle (V2V) communication links to support AAM services. This project investigates spectrum-agile millimeter wave-based tunable beamforming strategies needed for establishing reliable and robust V2V communications links to support autonomous flight operations in air corridors along with the supporting radio frequency and mixed signal …
Date: 2022-05-01/2025-04-30
Creator: Namuduri, Kamesh; Mahbub, Ifana; Jayaweera, Sudharman & Sun, Xiang
System: The UNT Digital Library
Ultrawideband Near-Field Probe System for Antenna Research (open access)

Ultrawideband Near-Field Probe System for Antenna Research

Data management plan for the grant, "Ultrawideband Near-Field Probe System for Antenna Research." The objective of this project is to acquire an ultrawideband near-field probe system to build a highly capable antenna measurement facility which will provide critical support for the research, development, and testing of new antenna designs and concepts at the University of North Texas (UNT). The requested near-field probe system will be integrated with existing hardware at UNT, including a vector network analyzer and an Albatross Projects shielded chamber, to complete the build for the measurement system that is capable of characterizing three-dimensional radiation patterns of antennas-under-test (AUT) over a wide frequency range of 0.65-18 GHz. The measurement facility will be used to not only support ongoing and future federally funded research of the principal investigators but also enhance undergraduate and graduate education and training in RF, microwave, and antenna engineering at UNT.
Date: 2022-09-01/2023-08-31
Creator: Luyen, Hung
System: The UNT Digital Library
Collaborative Research: Microneedle‐mediated Adaptive Phototherapy (MAP) for Wound Healing (open access)

Collaborative Research: Microneedle‐mediated Adaptive Phototherapy (MAP) for Wound Healing

Data management plan for the grant "Collaborative Research: Microneedle‐mediated Adaptive Phototherapy (MAP) for Wound Healing."
Date: 2022-10-01/2024-08-31
Creator: Kim, Jungkwun
System: The UNT Digital Library
Collaborative Research: Smart Stent for Post-Endovascular Aneurysm Repair (open access)

Collaborative Research: Smart Stent for Post-Endovascular Aneurysm Repair

Data management plan for the grant "Collaborative Research: Smart Stent for Post-Endovascular Aneurysm Repair." The overall objective of this proposal is to develop a Smart Stent for post-endovascular aneurysm repair (EVAR) surveillance that combines a flexible, hybrid, seamless, battery-less bioelectronic system with a deep-learning algorithm that offers an automated diagnosis of complications such as endoleak.
Date: 2022-10-01/2023-09-30
Creator: Kim, Jungkwun
System: The UNT Digital Library