5 Matching Results

Results open in a new window/tab.

CAREER: Fundamental Limits of Cryptographic Primitives Through Network Information Theory (open access)

CAREER: Fundamental Limits of Cryptographic Primitives Through Network Information Theory

Data management plan for the grant, "CAREER: Fundamental Limits of Cryptographic Primitives Through Network Information Theory." Research project studying the fundamental limits of a diverse array of cryptographic primitives through network information theory and coding tools. The project takes an information theoretic view of the investigation of the fundamental limits of cryptographic primitives. The project is expected to unveil theoretical and practical insights into cryptographic primitives, and enhance the understanding on their fundamental limits.
Date: 2021-07-01/2026-06-30
Creator: Sun, Hua
Object Type: Text
System: The UNT Digital Library
IUCRC Planning Grant University of North Texas: Center for Electric, Connected and Autonomous Technologies for Mobility (eCAT) (open access)

IUCRC Planning Grant University of North Texas: Center for Electric, Connected and Autonomous Technologies for Mobility (eCAT)

Data management plan for the grant "IUCRC Planning Grant University of North Texas: Center for Electric, Connected and Autonomous Technologies for Mobility (eCAT)." Research concentrating on interdisciplinary research, aiming to initiate and accelerate the transformation of mobility methods from conventional vehicles to electric, connected and autonomous vehicles by creating innovative electric, connected and autonomous technologies. The grant will create the Center for Electric, Connected and Autonomous Technologies for Mobility (eCAT). A partnership between Wayne State University (WSU), University of North Texas (UNT), and Clarkson University (Clarkson), the center not only serves as an apparatus of academic researchers collaborating with industry on important problems, but also provides industry partners opportunities to access advanced synergic research produced from a diverse group of researchers.
Date: 2021-07-01/2022-06-30
Creator: Fu, Song; Li, Xinrong & Yang, Qing
Object Type: Text
System: The UNT Digital Library
Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models (open access)

Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models

Data management plan for the grant, "Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models." Research to develop new location privacy protection techniques by considering vehicles’ mobility features in the road network, and consequently lead to a more secure and trustworthy computing environment in location-based services (LBSs). As privacy concerns are still among the main obstacles for mobile users to participate in many advanced LBSs, this project is poised to contribute to the wider adoption of LBSs for many applications (e.g. navigation systems and location-based recommendation systems). The project will also provide a set of diverse and interesting topics for undergraduate and graduate students and outreach activities for the community.
Date: 2021-07-01/2023-12-31
Creator: Qiu, Chenxi
Object Type: Text
System: The UNT Digital Library
SaTC: CORE: Small: Customizable Geo-Obfuscation to Protect Users' Location Privacy in Mobile Crowdsourcing (open access)

SaTC: CORE: Small: Customizable Geo-Obfuscation to Protect Users' Location Privacy in Mobile Crowdsourcing

Data management plan for the grant, "SaTC: CORE: Small: Customizable Geo-Obfuscation to Protect Users' Location Privacy in Mobile Crowdsourcing."
Date: 2023-07-01/2026-06-30
Creator: Qiu, Chenxi
Object Type: Text
System: The UNT Digital Library
High-Fidelity Conjugate Heat Transfer Simulation of Micro-Channel Heat Exchanger (open access)

High-Fidelity Conjugate Heat Transfer Simulation of Micro-Channel Heat Exchanger

Article describes how high-fidelity conjugate heat transfer simulations are used to model a micro-channel heat exchanger (MCHE) in a crossflow to study its thermal-hydraulic performance. Three different microchannel geometries, namely circular, triangular, and square with louver-shaped fins, are considered.
Date: July 1, 2023
Creator: Ahmed, Hossain; Sadat, Hamid & Nasrazadani, Seifollah
Object Type: Article
System: The UNT Digital Library