Degree Discipline

Efficient Linear Secure Computation and Symmetric Private Information Retrieval Protocols (open access)

Efficient Linear Secure Computation and Symmetric Private Information Retrieval Protocols

Security and privacy are of paramount importance in the modern information age. Secure multi-party computation and private information retrieval are canonical and representative problems in cryptography that capture the key challenges in understanding the fundamentals of security and privacy. In this dissertation, we use information theoretic tools to tackle these two classical cryptographic primitives. In the first part, we consider the secure multi-party computation problem, where multiple users, each holding an independent message, wish to compute a function on the messages without revealing any additional information. We present an efficient protocol in terms of randomness cost to securely compute a vector linear function. In the second part, we discuss the symmetric private information retrieval problem, where a user wishes to retrieve one message from a number of replicated databases while keeping the desired message index a secret from each individual database. Further, the user learns nothing about the other messages. We present an optimal protocol that achieves the minimum upload cost for symmetric private information retrieval, i.e., the queries sent from the user to the databases have the minimum number of bits.
Date: December 2020
Creator: Zhou, Yanliang
System: The UNT Digital Library
Group Testing: A Practical Approach (open access)

Group Testing: A Practical Approach

Broadly defined, group testing is the study of finding defective items in a large set. In the medical infection setting, that implies classifying each member of a population as infected or uninfected, while minimizing the total number of tests.
Date: December 2021
Creator: Gollapudi, Sri Srujan
System: The UNT Digital Library
The Convolutional Recurrent Structure in Computer Vision Applications (open access)

The Convolutional Recurrent Structure in Computer Vision Applications

By organically fusing the methods of convolutional neural network (CNN) and recurrent neural network (RNN), this dissertation focuses on the application of optical character recognition and image classification processing. The first part of this dissertation presents an end-to-end novel receipt recognition system for capturing effective information from receipts (CEIR). The main contributions of this research part are divided into three parts. First, this research develops a preprocessing method for receipt images. Second, the modified connectionist text proposal network is introduced to execute text detection. Third, the CEIR combines the convolutional recurrent neural network with the connectionist temporal classification with maximum entropy regularization as a loss function to update the weights in networks and extract the characters from receipt. The CEIR system is validated with the scanned receipts optical character recognition and information extraction (SROIE) database. Furthermore, the CEIR system has strong robustness and can be extended to a variety of different scenarios beyond receipts. For the convolutional recurrent structure application of land use image classification, this dissertation comes up with a novel deep learning model for land use classification, the convolutional recurrent land use classifier (CRLUC), which further improves the accuracy in classifying remote sensing land use images. Besides, the …
Date: December 2021
Creator: Xie, Dong
System: The UNT Digital Library

Analysis of the Integration of LEO Satellite Constellations into 5G Networks

Low Earth orbit (LEO) satellite systems have been proposed as a resource for combating the challenges in 5G network coverage and expanding connectivity to a global realm. This research focuses on the current architecture of LEO satellite constellations, with an emphasis on satellite coverage, visibility patterns and coordination schemes. Key-elements of integrating LEO satellites into the eMBB component of 5G are presented and a breakdown of potential link channel characteristics and physical layer performance metrics are described. The produced information allows for a justified analysis on the conceptualized integration.
Date: December 2021
Creator: Cruz Vazquez, Martin
System: The UNT Digital Library
Applications of Machine Learning for Remote Sensing and Environmental Monitoring (open access)

Applications of Machine Learning for Remote Sensing and Environmental Monitoring

This thesis covers applications of machine learning to the fields of remote sensing and environmental monitoring. First, a generalized background on the concepts, tools, and methods used throughout the remainder of the research project are introduced. Chapter 3 covers the implementation of artificial neural networks to improve low-cost particulate matter sensing networks using collocated high-quality sensors with varying dataset parameters. In Chapter 4, an attention-enhanced LSTM-Convolutional neural network is presented to reconstruct satellite-based aerosol optical depth data lost to atmospheric interference. Chapter 5 applies attention mechanisms and convolutional neural networks to the reconstruction and upsampling of satellite-based land surface temperature maps. Chapter 6 presents a model employing geospatial techniques and machine learning methods with a combination of ground-based and remote sensing data to produce a daily ultra-high resolution 30 meter mapping of the PM2.5 concentration across Denton County, Texas.
Date: December 2022
Creator: Daniels, Jacob Edward
System: The UNT Digital Library

Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic Devices

In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1. We also examined the large exciton binding …
Date: December 2020
Creator: Bandyopadhyay, Avra Sankar
System: The UNT Digital Library
Machine Learning Improvements for Data Partitioning and Classification Applied to Cardiac Arrhythmia Signals (open access)

Machine Learning Improvements for Data Partitioning and Classification Applied to Cardiac Arrhythmia Signals

This thesis creates a new method for the ethical splitting of data as well as improvements to neural network architectures to increase performance. Ethical dataset splitting should be based on statistics from the data, this prevents artificial manipulation of the data that helps or hurts the performance of a network. This bias introduced to the dataset can also be present by using the popular method of randomly splitting data into datasets. To remove bias from dataset splitting, the splits of a dataset must be based on statistics from the data. Improving neural network architectures to increase performance is very important for a wide range of applications, especially for classification of heartbeats. Every improvement matters, especially when the application means that any errors could put the life of a person in danger. These advancements being applied to heartbeat classification have exciting implications for saving thousands of lives and billions of dollars. The presented methods can also be expanded to a wide variety of applications and adapted to different types of data as increasing performance and splitting up datasets is important in all fields of machine learning.
Date: December 2022
Creator: Cayce, Garrett Irwin
System: The UNT Digital Library
Distributed Source Coding with LDPC Codes: Algorithms and Applications (open access)

Distributed Source Coding with LDPC Codes: Algorithms and Applications

The syndrome source coding for lossless data compression with side information based on fixed-length linear block codes is the main emphasis of this work. We demonstrate that the source entropy rate can be achieved for syndrome source coding with side information when the sources are correlated. Next, we examine employing LDPC codes to apply the channel and syndrome concepts in order to satisfy the Slepian Wolf limit. Our findings indicate that irregular codes perform significantly better when the compression ratio is larger. Additionally, we looked at how well different applications performed when running on two different mobile networks. We have tested those applications which are used in our day-to-day life. Our main focus is to make wireless communication much easier. We know that nowadays data is increasing which led to increase in the transfer of data. There are a lot of errors while doing so like channel error, bit error rate, jitter, etc. To overcome such kind of problems compression and decompression should be done effectively without any complexity to achieve a high performance ratio.
Date: December 2022
Creator: Gandhi, Himani Chirag
System: The UNT Digital Library

An Optimized Control System for the Independent Control of the Inputs of Doherty Power Amplifier

This thesis presents an optimized drive signal control system for a 2.5 GHz Doherty power amplifier (PA). The designed system enables independent control of the amplitudes and phases of the drive signals fed to the inputs of two parallel PAs. This control system is demonstrated here for Doherty PA architecture with a combiner network which is used as an impedance inversion between the path of two parallel connected PAs. Independent control of the inputs is achieved by incorporating a variable attenuator (VA) and a variable phase shifter (VPS) in each of the two parallel paths. Integrating VA and VPS allows driving varying power levels with an arbitrary phase difference between the individual parallel PAs. A Combiner network consists of a quarter-wave transmission line at the output of the main power amplifier, which is used to invert the impedance between the main and peaking transistor. The specific VA (Qorvo QPC6614) and VPS (Qorvo QPC2108) components that are used for the test system provide an amplitude attenuation range from 0.5 dB to 31.5 dB with a step size of 0.5 dB and a phase range from 0◦ to 360◦ for a step size of 5.6◦at the intended operating frequency of 2.5 GHz, …
Date: December 2022
Creator: Sah, Pallav Kumar
System: The UNT Digital Library
Analysis of Compressive Sensing and Hardware Implementation of Orthogonal Matching Pursuit (open access)

Analysis of Compressive Sensing and Hardware Implementation of Orthogonal Matching Pursuit

My thesis is to understand the concept of compressive sensing algorithms. Compressive sensing will be a future alternate technique for the Nyquist rate, specific to some applications where sparsity property plays a major role. Software implementation of compressive sensing (CS) takes more time to reconstruct a signal from CS measurements, so we use the orthogonal matching pursuit and basis pursuit algorithms. We have used an image size of 256x256 is used for reconstruction and also implemented a field-programmable gate array (FPGA) of the orthogonal matching pursuit using an image.
Date: December 2022
Creator: Kadiyala, Mani Divya
System: The UNT Digital Library
Air Corridors: Concept, Design, Simulation, and Rules of Engagement (open access)

Air Corridors: Concept, Design, Simulation, and Rules of Engagement

Air corridors are an integral part of the advanced air mobility infrastructure. They are the virtual highways in the sky for transportation of people and cargo in the controlled airspace at an altitude of around 1000 ft. to 2000 ft. above the ground level. This paper presents fundamental insights into the design of air corridors with high operational efficiency as well as zero collisions. It begins with the definitions of air cube, skylane or track, intersection, vertiport, gate, and air corridor. Then, a multi-layered air corridor model is proposed. Traffic at intersections is analyzed in detail with examples of vehicles turning in different directions. The concept of capacity of an air corridor is introduced along with the nature of distribution of locations of vehicles in the air corridor and collision probability inside the corridor are discussed. Finally, the results of simulations of traffic flows are presented.
Date: December 2021
Creator: Muna, Sabrina Islam
System: The UNT Digital Library

Intelligent ECG Acquisition and Processing System for Improved Sudden Cardiac Arrest (SCA) Prediction

The survival rate for a suddent cardiac arrest (SCA) is incredibly low, with less than one in ten surviving; most SCAs occur outside of a hospital setting. There is a need to develop an effective and efficient system that can sense, communicate and remediate potential SCA situations on a near real-time basis. This research presents a novel Zeolite-PDMS-based optically unobtrusive flexible dry electrodes for biosignal acquisition from various subjects while at rest and in motion. Two zeolite crystals (4A and 13X) are used to fabricate the electrodes. Three different sizes and two different filler concentrations are compared to identify the better performing electrode suited for electrocardiogram (ECG) data acquisition. A low-power, low-noise amplifier with chopper modulation is designed and implemented using the standard 180nm CMOS process. A commercial off-the-shelf (COTS) based wireless system is designed for transmitting ECG signals. Further, this dissertation provides a framework for Machine Learning Classification algorithms on large, open-source Arrhythmia and SCA datasets. Supervised models with features as the input data and deep learning models with raw ECG as input are compared using different methods. The machine learning tool classifies the datasets within a few minutes, saving time and effort for the physicians. The experimental results …
Date: December 2022
Creator: Kota, Venkata Deepa
System: The UNT Digital Library
Neural Network Classifiers for Object Detection in Optical and Infrared Images (open access)

Neural Network Classifiers for Object Detection in Optical and Infrared Images

This thesis presents a series of neural network classifiers for object detection in both optical and infrared images. The focus of this work is on efficient and accurate solutions. The thesis discusses the evolution of the highly efficient and tiny network Binary Classification Vision Transformer (BC-ViT) and how through thoughtful modifications and improvements, the BC-ViT can be utilized for tasks of increasing complexity. Chapter 2 discusses the creation of BC-ViT and its initial use case for underwater image classification of optical images. The BC-ViT is able to complete its task with an accuracy of 99.29\% while being comprised of a mere 15,981 total trainable parameters. Chapter 3, Waste Multi-Class Vision Transformer (WMC-ViT), introduces the usefulness of mindful algorithm design for the realm of multi-class classification on a mutually exclusive dataset. WMC-ViT shows that the task oriented design strategy allowed for a network to achieve an accuracy score of 94.27\% on a five class problem while still maintaining a tiny parameter count of 35,492. The final chapter demonstrates that by utilizing functional blocks of BC-ViT, a simple and effective target detection algorithm for infrared images can be created. The Edge Infrared Vision Transformer (EIR-ViT) showed admirable results with a high IoU …
Date: December 2023
Creator: Adams, Ethan Richard
System: The UNT Digital Library
Conditional Disclosure of Secrets and Storage over Graphs (open access)

Conditional Disclosure of Secrets and Storage over Graphs

In the era of big data, it is essential to implement practical security and privacy measures to ensure the lawful use of data and provide users with trust and assurance. In the dissertation, I address this issue through several key steps. Firstly, I delve into the problem of conditional secret disclosure, representing it using graphs to determine the most efficient approach for storing and disclosing secrets. Secondly, I extend the conditional disclosure of secrets problem from a single secret to multiple secrets and from a bipartite graph to an arbitrary graph. Thirdly, I remove security constraints to observe how they affect the efficiency of storage and recovery. In our final paper, I explore the secure summation problem, aiming to determine the capacity of total noise. Throughout the dissertation, I leverage information-theoretic tools to address security and privacy concerns.
Date: December 2023
Creator: Li, Zhou
System: The UNT Digital Library