Structural and Magnetic Properties of Additively Manufactured Hiperco (FeCo-2V) (open access)

Structural and Magnetic Properties of Additively Manufactured Hiperco (FeCo-2V)

The FeCo-V alloy, commercially referred to as Hiperco, is known for its great soft magnetic properties. However, the high cost of production has limited the usage of this alloy to small-scale applications, where the small volume and high magnetic performance are critical. Additive manufacturing (AM) has the potential to solve the production problems that exist in Hiperco manufacturing. The present research has focused on selective laser melting (SLM) based AM processing of Hiperco. The goal was to perform a detailed examination of SLM processed Hiperco and determine how the process parameters affect the microstructure, mechanical and magnetic properties. While a systematic set of SLM process parameters were employed, the results indicate that the energy density was quite similar for this set of process parameters, resulting in similar properties. Overall, the saturation magnetization (Ms) values were very good, but the coercivity (Hc) values were very high, in the case of all as SLM processed conditions. Additionally, a large variation in porosity was observed in the as SLM processed samples, as a function of process parameters. Interestingly, long-term heat-treatments of these samples in an Ar+H2 atmosphere resulted in substantial decreases in the Hc values. These results are presented and discussed.
Date: December 2021
Creator: O'Donnell, Aidan James
System: The UNT Digital Library
Fractography and Mechanical Properties of Laminated Alumina and Yttria Stabilized Zirconia (open access)

Fractography and Mechanical Properties of Laminated Alumina and Yttria Stabilized Zirconia

Yttria stabilized zirconia (YSZ) is a polymorph with possible phase transformation toughening occurring during impact. The fractography and mechanical properties of laminated alumina and YSZ were studied in this thesis. Five sample types were studied in this thesis: (5:5) Al2O3/YSZ (a sequence of 5 alumina tapes stacked on 5 YSZ tapes), (5:5) Al2O3/YSZ (1 wt.% Pure ZrO2), (7:3) Al2O3/YSZ, Al2O3, and YSZ. Scanning electron microscopy (SEM) and X-ray microscopy (XRM) were used to study morphology and crack propagation with three-point tests performed to study the flexural strength. X-ray diffraction (XRD) spectra of all samples pre and post three-point tests were examined to determine if a change in monoclinic zirconia occurred. The combination of SEM and XRM data found microcracks in the YSZ layers of Al2O3/YSZ laminates with none present on YSZ laminates, leading to the conclusion tensile stress was performed on YSZ during sintering with Al2O3. Fracture patterns show a curving of cracks in Al2O3 layers and abrupt, jagged breaks in YSZ layers with crack forking at major YSZ microcrack regions. YSZ laminates were found to have the highest average flexural strength, but a very high standard deviation and low sample count and Al2O3 laminates having the second highest flexural …
Date: December 2021
Creator: Cotton, Shomari Johnny
System: The UNT Digital Library

First Principles Study of the Effect of Local Bonding on Diffusion Mechanisms in Alloys

This work demonstrates how local, randomized tailoring of bond stiffness can affect the activation energy of diffusion in model alloys using density functional theory-based computations. This work is organized into two parts. The first part deals with the vacancy diffusion mechanism, and it compares the in–plane (IP) vs out-of-plane (OOP) diffusion paths in prototypical binary Mg-X (Ca, Y, and Gd) and ternary Mg-X (Ca, Y, and Gd)-Zn alloys. We examine how vacancy formation, migration, and solute vacancy binding energies in binary Mg-X alloys influence diffusion activation and correlated them with conventional diffusion model based solely on the solute sizes. Next, we explore how Zn addition to binary Mg-X (Ca, Y, and Gd) alloys influences the OOP activation energy barrier is discussed in terms of detailed energetic computations and bond characterization in the present work. Our results indicate that Zn addition further enhances the OOP activation energy barrier compared to corresponding activation energies in Mg binaries. This work concludes that engineering stiffer directional bonds via micro-alloying additions in Mg is a promising route to dramatically improve their high temperature creep response. The second part of my work investigates the effects of Si, P, and S solutes on H interstitial diffusion mechanism …
Date: December 2021
Creator: Paranjape, Priyanvada Madhukar
System: The UNT Digital Library
Unraveling the Effect of Atomic Configurations and Structural Statistics on Mechanical Behavior of Multicomponent and Amorphous Alloys (open access)

Unraveling the Effect of Atomic Configurations and Structural Statistics on Mechanical Behavior of Multicomponent and Amorphous Alloys

Multicomponent high-entropy and amorphous alloys represent relatively new classes of structural materials with complex atomic configurations and exceptional mechanical properties. However, there are several knowledge gaps in the relationships between their atomic structure and mechanical properties. Understanding these critical relationships will enable novel alloy design and tailoring of their mechanical properties for desired engineering applications. In this dissertation, first-principles calculations and molecular dynamics simulations are applied to investigate the local atomic configurations and ordering in high-entropy and amorphous alloys. Our findings suggest that fluctuations in local atomic configurations for high- entropy alloys result in significant changes in stacking fault energy, twin energy, dislocation behavior, dislocation-twin interactions, and critical shear stress. For amorphous alloys or metallic glasses, the short-range order (SRO) and medium-range order (MRO) were found to play decisive roles in determination of their mechanical properties. Structural relaxation was found to lead to shear localization, which was attributed to free volume change and evolution of SRO and MRO to more brittle nature. In contrast, rejuvenated metallic glasses had relatively large and uniform free volume distribution giving rise to homogeneous flow and increased plasticity.
Date: December 2021
Creator: Yang, Yu Chia
System: The UNT Digital Library
Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing (open access)

Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing

Laser-based additive manufacturing offers a high degree of thermokinetic flexibility that has implications on the structure and properties of the fabricated component. However, to exploit the flexibility of this process, it is imperative to understand the process-inherent thermokinetic evolution and its effect on the material characteristics. In view of this, the present work establishes a fundamental understanding of the spatiotemporal variation of thermokinetics during the fabrication of the non-ferrous alloys using the laser powder bed fusion process. Due to existing limitations of experimental techniques to probe such thermokinetics, a finite element method-based computational model is developed to predict the thermokinetic variations during the process. With the computational approach coupled with experimental techniques, the current work presents the solidification behavior influenced by spatially varying thermokinetics. In addition, it uniquely predicts the process-inherent multi-track multi-layer evolution of thermal cycles as well as thermal stress cycles and identifies their influence on the post-solidification microstructural evolution involving solid-state phase transformation. Lastly, the response of the material with a unique microstructure is recorded under various conditions (static and dynamic), which is again compared with the same set properties obtained for the same material processed via conventional routes.
Date: December 2021
Creator: Pantawane, Mangesh V
System: The UNT Digital Library

Investigation of the Processing-Induced Transition from Shape Memory to Strain Glass of Ni-Ti and Fe-Mn-Al-Cr-Ni Alloys

In this study, we observed the effects of the processing-induced method on two different shape memory alloys (SMAs). First, we compare the transformation behavior of a martensitic NiTi SMA during thermal cycling using wide angle synchrotron radiation X-ray diffraction (WAXS). Based on the thermal cycling results, three observations about processing-induced SGAs as compared to SMAs can be seen: (1) retention of distorted austenite at high and low temperatures, (2) broadening of diffraction peaks in WAXS and disappearance of the thermal peaks in DSC measurements both due to induced strain, and (3) gradual increase in the amount of the martensitic phase. Second, we applied a processing-induced method to a FeMnAlCrNi alloy to examine the possibility of forming a strain glass alloy in an Fe-based system through sufficient dislocation formation via plastic deformation. This alloy was subjected to various percentages of cold work and characterized using scanning electron microscopy, differential scanning calorimetry, Vickers hardness, WAXS data. The results indicate with 50% thickness reduction, stress-free thermal cycling no longer exhibits a measurable phase transformation, suggesting the successful formation of strain glass alloy through sufficient dislocation. The results of this research contribute significantly to the advancement of strain glass alloys (SGAs), especially with respect …
Date: December 2022
Creator: Ashmore, Bailey Nicole
System: The UNT Digital Library
Additive Manufacturing of AZ31B Magnesium Alloy via Friction Stir Deposition (open access)

Additive Manufacturing of AZ31B Magnesium Alloy via Friction Stir Deposition

Additive friction stir deposition (AFSD) of AZ31B magnesium alloy was conducted to examine evolution of grain structure, phases, and crystallographic texture. AFSD was carried out using a hollow tool made from tool steel at a constant rotational velocity of 400 rpm on the AZ31B base plate. Bar stock of AZ31B was utilized as a feed material. The linear velocity of the tool was varied in the range of 4.2-6.3 mm/s. The feed rate of the material had to be maintained at a half value compared to the corresponding linear velocity for the successful deposition. The layer thickness and length of the deposits were kept constant at 1 mm and 50 mm respectively. The tool torque and actuator force values were recorded during the process and for calculation of the average input energy for each processing condition. Temperature during the AFSD experiments was monitored using a type k thermocouple located 4 mm beneath the deposition surface at the center of the deposition track. The average input energy values showed a decreasing trend with increasing tool linear velocity. The temperature values during deposition were ∼0.7 times the liquidus of the alloy. The deposited material then was examined by laser microscope and profilometer, …
Date: December 2021
Creator: Patil, Shreyash Manojkumar
System: The UNT Digital Library

Processing and Shape-Setting of Shape Memory Alloys for Small Satellite Antennas

In this study, four different NiTi-based shape memory alloys (SMAs) compositions were processed, shape-set, and characterized to evaluate their effectiveness as SMA actuation component for satellite antennas. Three of the compositions were commercially available NiTi wires (90°C Flexinol® actuator NiTi wire and Confluent ADB SE508 NiTi wire), NiTi SM495 plates (ATI Specialty Alloys and Components) and the other composition was in house lab-produced NiTiCu plate. Different shape-setting techniques were performed such as pin and plate, fixtures and dies, and finally a sandwich fixture. The two most promising outcomes were the SE NiTi 508 wire and the NiTiCu plate. A SE NiTi 508 wire was first heat-treated at 550 °C for 3 hours and then it was shape-set at 450 °C for 30 min using a Cu tube which was previously deformed to the desired deployment curvature and fixed on a steel rig. The wire was kept inside the Cu tube during the shape-setting process to obtain the desired curvature. After shape-setting, the wire was thermally cycled multiple times. The results showed that the SE NiTi 508 wire was able to retain its deployment shape successfully after each thermal cycle. Furthermore, a NiTiCu plate was sandwiched between two steel sheets which …
Date: December 2022
Creator: Al Jabri, Nehal Ahmed Mubarak
System: The UNT Digital Library
Processing, Pre-Aging, and Aging of NiTi-Hf (15-20 at.%) High Temperature Shape Memory Alloy from Laboratory to Industrial Scale (open access)

Processing, Pre-Aging, and Aging of NiTi-Hf (15-20 at.%) High Temperature Shape Memory Alloy from Laboratory to Industrial Scale

The overarching goal of this research was to generate a menu of shape memory alloys (SMAs) actuator materials capable of meeting the demands of aerospace applications. Material requirements were recognized to meet the demand for high temperature SMAs with actuating temperatures above 85 °C and provide material options capable of performing over 100K actuation cycles. The first study is a preliminary characterization for the down selection of Ni-rich NiTiHf15 compositions chosen for a more in-depth examination of the nano-precipitation and evolution of the H-phase. To make this selection, the effect of Ni content in Ni-rich NiTiHf high temperature shape memory alloys (HTSMAs) on processability, microstructure, and hardness was analyzed for three compositions (Ni50.1TiHf15, Ni50.3TiHf15, Ni50.5TiHf15). Each composition was characterized under three conditions: homogenized, 25%, and 50% thickness reduction through hot-rolling. The second study emphasized the processing and aging response of an industrially produced, hot-extruded Ni50.3Ti29.7Hf20 (at%) HTSMA. The samples were sectioned into two halves with half remaining as-extruded and the other half hot-rolled to a 25% reduction in thickness. A portion of both conditions underwent conventional aging for 3 hours at various temperatures ranging from 450-750 °C, and the other portion was pre-aged for 12 hours at 300 °C followed …
Date: December 2020
Creator: Gantz, Faith
System: The UNT Digital Library

Development and Thermo-Mechanical Testing of Low Hysteresis Shape Memory Alloy for Satellite Actuators

Shape memory alloys (SMAs) have gained much attention as a powerful source of actuation due to their improved performance, reduced size, and reduced complexity between components as well as having a high work output density. Their primary mechanism of actuation relies on a non-diffusional cyclic phase transformation from martensite to austenite, where the amount of thermal energy needed per cycle is directly associated with the hysteresis width between the austenite final and martensite final temperatures. Consequently, a narrower gap between those two temperature ranges requires a much lower energy demand to produce the actuation needed. Previous studies have indicated that the hysteresis width is linked to a strong coherence between the austenite/martensite interface. It has been shown that elemental additions to NiTi-based SMAs can further improve this coherency. Another huge challenge facing this unique technology is linked with its thermo-mechanical stability. Binary NiTi SMAs often exhibit significant transformation temperature shifts after each thermo-mechanical cycle, which can contribute to a shorter lifespan. The primary goal of this project is to identify and develop thermo-mechanically stable, low hysteresis shape memory alloys (LHSMAs) for actuator applications. To accomplish this goal, elemental additions of Cu, Co, Hf, and Pd were incorporated into NiTi-based SMAs …
Date: December 2022
Creator: Montagnoli, Andre Luiz
System: The UNT Digital Library

Influence of Externally Applied Magnetic Field on the Mechanical Behavior of Paramagnetic Materials

Current ways to alter the microstructure of materials are usually through heat treatments, alloying, and other physical metallurgical methods. Recent efforts in the 21st century are focused on altering the microstructure of a material without physical contact which can be achieved through exposure to a magnetic field (MF). The motivation of this research is to study the quantum effects by subjecting solid-state metals to exposure of MFs. Many of the popular metals currently used in industry are paramagnetic. The ability to alter the microstructure and thus properties of these paramagnetic materials through a magnetic field would open new avenues to the field of research, including, potentially, a pollution-free, non-contact route. The effects of a magnetic field on the mechanical properties of paramagnetic materials were observed through compression testing of the pure paramagnetic material samples induced in a magnetic field. XRD and PPMS were used to relate flow stress to dislocation density and magnetic property of the samples when exposed to the presence of a static magnetic field. The effects of a magnetic field relative to alloyed paramagnetic materials were observed through the same procedure as pure paramagnetic elements. For this purpose, -Ti alloys were chosen as literature suggests a phase …
Date: December 2022
Creator: Reeder, Jessica Phoebe
System: The UNT Digital Library
Developing Modern Atom Probe Tomography for Nonmetals (open access)

Developing Modern Atom Probe Tomography for Nonmetals

Atom probe tomography as a 3D atomic-scale characterization tool has seen considerable development in the past decade, both in systems improvement and theoretical understanding. However, the time and expertise required from the outset of experimentation to analyzed results is highly asymmetric between metals and nonmetals. For complex oxides, this difficulty can be exemplified by GdBa2Cu3O7-x based high-temperature superconducting coated conductors. The objective of this dissertation is to further establish the experimental and theoretical knowledge required to effectively, and compositionally, study nanoscale defects in nonmetals using atom probe tomography; specifically, those influencing the electromagnetic properties of RBa2Cu3O7-x high temperature superconducting coated conductors. The results from this dissertation can be applied to other complex oxides, nitrides, carbides, or other nonmetallic systems, through the creation and use of an extensive open-source Python package, APAV.
Date: December 2022
Creator: Smith, Jesse Daniel
System: The UNT Digital Library

Tribo-Corrosion of High Entropy Alloys

In this dissertation, tribo-corrosion behavior of several single-phase and multi-phase high entropy alloys were investigated. Tribo-corrosion of body centered cubic MoNbTaTiZr high entropy alloy in simulated physiological environment showed very low friction coefficient (~ 0.04), low wear rate (~ 10-8 mm3/Nm), body-temperature assisted passivation, and excellent biocompatibility with respect to stem cells and bone forming osteoblast cells. Tribo-corrosion resistance was evaluated for additively manufactured face centered cubic CoCrFeMnNi high entropy alloy in simulated marine environment. The additively manufactured alloy was found to be significantly better than its as-cast counterpart which was attributed to the refined microstructure and homogeneous elemental distribution. Additively manufactured CoCrFeMnNi showed lower wear rate, regenerative passivation, less wear volume loss, and nobler corrosion potential during tribo-corrosion test compared to its as-cast equivalent. Furthermore, in the elevated temperature (100 °C) tribo-corrosion environment, AlCoCrFeNi2.1 eutectic high entropy alloy showed excellent microstructural stability and pitting resistance with an order of magnitude lower wear volume loss compared to duplex stainless steel. The knowledge gained from tribo-corrosion response and stress-corrosion susceptibility of high entropy alloys was used in the development of bio-electrochemical sensors to sense implant degradation. The results obtained herewith support the promise of high entropy alloys in outperforming currently used …
Date: December 2020
Creator: Shittu, Jibril
System: The UNT Digital Library

Advanced Cathodes for High Energy Density Lithium Sulfur Battery

A systematic development of 2D alloy catalyst with synergistic performance of high lithium polysulfide (LiPS) binding energy and efficient Li+ ion/electron conduction is presented. The first section of work found that Li+ ions can flow through the percolated ion transport pathway in polycrystalline MoS2, while Na+ and K+ ions can easily flow through the percolated 1D ion channel near the grain boundaries. An unusually high ionic conductivity of extrinsic Li+, Na+, and K+ ions in 2D MoS2 film exceeding 1 S/cm was measured that is more than two orders of magnitude higher than those of conventional solid ionic materials, including 2D ionic materials. The second section of this dissertation focus on catalyzing the transformation of LiPSs to prevent the shuttle effect during the battery cycling by synthesizing 2H (semiconducting) – 1T (metallic) mixed phase 2D Mo0.5W0.5S2 alloy on CNF paper, using two step sputtering and sulfurization method. The lithium sulfur (Li-S) battery cell assembled with the 2D Mo0.5W0.5S2/CNF/S cathode shows a high specific capacity of 1228 mAh g-1 at 0.1C and much higher cyclic stability over 4 times as compared to the pristine cathodes. The high LiPSs binding energy of catalyst efficiently prevents the shuttling effect and corrosion of Li …
Date: December 2021
Creator: Bhoyate, Sanket
System: The UNT Digital Library

Materials Approaches for Transparent Electronics

This dissertation tested the hypothesis that energy transferred from a plasma or plume can be used to optimize the structure, chemistry, topography, optical and electrical properties of pulsed laser deposited and sputtered thin-films of ZnO, a-BOxNy, and few layer 2H-WS2 for transparent electronics devices fabricated without substrate heating or with low substrate heating. Thus, the approach would be compatible with low-temperature, flexible/bendable substrates. Proof of this concept was demonstrated by first optimizing the processing-structure-properties correlations then showing switching from accumulation to inversion in ITO/a-BOxNy/ZnO and ITO/a-BOxNy/2H-WS2 transparent MIS capacitors fabricated using the stated processes. The growth processes involved the optimization of the individual materials followed by growing the multilayer stacks to form MIS structures. ZnO was selected because of its wide bandgap that is transparent over the visible range, WS2 was selected because in few-layer form it is transparent, and a-BOxNy was used as the gate insulator because of its reported atomic smoothness and low dangling bond concentration. The measured semiconductor-insulator interfacial trap properties fall in the range reported in the literature for SiO2/Si MOS structures. X-ray photoelectron spectroscopy (XPS), Hall, photoluminescence, UV-Vis absorption, and X-ray diffraction (XRD) measurements investigated the low-temperature synthesis of ZnO. All films are nanocrystalline with …
Date: December 2021
Creator: Iheomamere, Chukwudi E.
System: The UNT Digital Library

Thermodynamics, Kinetics and Mechanical Behavior of Model Metallic Glasses

The thermophysical properties and deformation behavior of a systematic series of model metallic glasses was investigated. For Zr-based metallic glasses with all metallic constituents, the activation energy of glass transition was determined to be in the range of 74-173 kJ/mol while the activation energy of crystallization was in the range of 155-170 kJ/mol. The reduced glass transition temperature was roughly the same for all the alloys (~ 0.6) while the supercooled liquid region was in the range of 100-150 K, indicating varying degree of thermal stability. In contrast, the metal-metalloid systems (such as Ni-Pd-P-B) showed relatively higher activation energy of crystallization from short range ordering in the form of triagonal prism clusters with strongly bonded metal-metalloid atomic pairs. Deformation mechanisms of all the alloys were investigated by uniaxial compression tests, strain rate sensitivity (SRS) measurements, and detailed characterization of the fracture surface morphology. For the metal-metal systems, plasticity was found to be directly correlated with shear transformation zone (STZ) size, with systems of larger STZ size showing better plasticity. In metal-metalloid amorphous alloys, plasticity was limited by the distribution of STZ units, with lower activation energy leading to more STZ units and better plasticity. The alloys with relatively higher plasticity …
Date: December 2023
Creator: Akhtar, Mst Alpona
System: The UNT Digital Library

Additive Friction Stir Deposition of Al-Ce Alloys for Improved Strength and Ductility

Additive friction stir deposition (AFSD) is a solid-state additive manufacturing (AM) technique that breaks down large constituent particles into more refined and uniformly disturbed microstructure. AFSD was used to print Al-Ce alloys. Current commercial Al-alloys upon elevated temperatures go through dissolution and coarsening of strengthening precipitates causing mechanical degradation of these alloys. Al-Ce alloys do not have this issue as cerium's low solubility restricts dissolution into the aluminum matrix at elevated temperatures, thus giving great thermal stability to the microstructure. Al-Ce alloys lack solid solubility that affects the solid solution strengthening and precipitation strengthening. Al-Ce alloys have limitation at room temperature as they can only reach a maximum of ~65 MPa yield strength. Elements like magnesium have been added to alloy to enable solid solution strengthening, and scandium to enable precipitation strengthening to improve strength before going through the AFSD process. By adding new elements to the Al-Ce alloys, an increase in the yield strength from ~60 MPa to ~200 MPa was achieved before AFSD. The casted alloys form coarse particles that reach 300 µm in size; resulting in stress concentration that causes material fracture before necking, giving >10% ductility. AFSD breaks down these coarse particles to increase strength and …
Date: December 2023
Creator: Davis, Devin Fredric
System: The UNT Digital Library