Degree Discipline

Degree Level

Neurotoxic Effects of Polycyclic Aromatic Hydrocarbons in Vertebrates, from Behavioral to Cellular Levels

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental toxicants found in anthropogenic mixtures such as crude oil, air pollution, vehicle exhaust, and in some natural combustion reactions. Single PAHs such as benzo[a]pyrene (BaP) also impact fish behavior when animals are exposed in early life stages and for short periods of time. Aquatic animals such as fish may encounter BaP through road runoff and oil spills, but few studies have examined the impact of aqueous exposure on adult fish, and fewer have examined the resulting fitness-relevant behavioral consequences of BaP and PAH mixtures and their long-term persistence. This dissertation targets this gap in the literature by examining how aqueous exposure to BaP influences anxiety-like behavior, learning, and memory in adult zebrafish, and how parental exposure to the PAH mixture, crude oil, combined with hypoxia affects social and exploratory behavior in unexposed larval zebrafish. We found that learning and memory were not affected by 24 hour exposure to BaP, that anxiety-like behavior was minimally affected, and that locomotor parameters such as distance moved and times spent in darting and immobile states were significantly altered by exposure to BaP. Additionally, we found that parental exposure to crude oil and hypoxia decreased larval velocity. Additionally, …
Date: July 2023
Creator: Dunton, Alicia D.
System: The UNT Digital Library

The Impact of Invasive Salmonids on Ecosystem Functioning in South America's Sub-Antarctic Inland and Marine Waters

Invasions from coho salmon were first reported in the Cape Horn Biosphere Reserve (CHBR) in 2019 which is the most southern distribution registered to date. The CHBR is known for its high number of endemic species and unique biodiversity, such as the native fishes Galaxias maculatus and Aplochiton taeniatus. There are now three invasive salmonid species in the rivers of CHBR and are a potential threat to the native fish taxa. Stable isotope and gut content analysis were used to understand resource utilization by both native galaxiid and invasive salmonid taxa, as well as aquatic macroinvertebrates and riparian spiders. The natural laboratory study approach applied to this research, allowed for comparisons of differences within streams that contain conditions in which fish do not occur naturally, to sites in which high densities of invasive salmonid exist. Analysis of the trophic niche and diet in this study showed the importance of marine resource use by the native galaxiid and coho salmon juveniles supported with elevated δ15N and δ34S ratios. Diet analysis also confirmed there was the highest similarity between the coho salmon juveniles and the native fish. Altered behavior and habitat use was shown through the isotope and diet analysis for the …
Date: May 2023
Creator: Moore, Sabrina
System: The UNT Digital Library
Detection and Classification of Cancer and Other Noncommunicable Diseases Using Neural Network Models (open access)

Detection and Classification of Cancer and Other Noncommunicable Diseases Using Neural Network Models

Here, we show that training with multiple noncommunicable diseases (NCDs) is both feasible and beneficial to modeling this class of diseases. We first use data from the Cancer Genome Atlas (TCGA) to train a pan cancer model, and then characterize the information the model has learned about the cancers. In doing this we show that the model has learned concepts that are relevant to the task of cancer classification. We also test the model on datasets derived independently of the TCGA cohort and show that the model is robust to data outside of its training distribution such as precancerous legions and metastatic samples. We then utilize the cancer model as the basis of a transfer learning study where we retrain it on other, non-cancer NCDs. In doing so we show that NCDs with very differing underlying biology contain extractible information relevant to each other allowing for a broader model of NCDs to be developed with existing datasets. We then test the importance of the samples source tissue in the model and find that the NCD class and tissue source may not be independent in our model. To address this, we use the tissue encodings to create augmented samples. We test …
Date: July 2023
Creator: Gore, Steven Lee
System: The UNT Digital Library

The Consequences of Early Life Stage Thyroid Suppression on Immune Function in the Fathead Minnow (Pimephales promelas)

Current evidence suggests that thyroid hormones (THs) may impact development of the immune system. However, studies that explore the role of THs in immune development are limited, and the mechanisms leading to alterations in immune function are poorly understood. It is important to elucidate the role of THs in immune development given that many environmental contaminants have been shown to disrupt TH homeostasis and may also have negative impacts on the immune system. As such, the main goal of this study was to determine the long-term consequences of early life stage (ELS) hypothyroidism on immune function. To achieve this goal, it was first necessary to further characterize basic immune function in the selected model species, the fathead minnow (FHM, Pimephales promelas). Preliminary studies were conducted to describe the transcriptomic response to Yersinia ruckeri and adapt assays for the assessment of respiratory burst and phagocytic cell activity. To determine the long-term effects of ELS hypothyroidism, FHMs were exposed to the model thyroid suppressant propylthiouracil (PTU) from <1 to 30 days post hatch and reared under normal conditions. Upon reaching adulthood, ex vivo immune cell function and the in vivo immune response to Y. ruckeri were assessed. Fish exposed to PTU experienced …
Date: May 2020
Creator: Thornton Hampton, Leah Marie
System: The UNT Digital Library

Investigating the Mechanisms involved in Traffic-Generated Air Pollution: Mediated Disruption of the Blood-Brain Barrier in a Wild Type Mouse Model using a Pharmaceutical Intervention Approach

This study investigated whether oxLDL and/or angiotensin (Ang) II signaling pathways mediate traffic-generated air pollution- exposure induced alterations in blood-brain barrier (BBB) integrity and permeability in a healthy wild type (C57Bl/6) mouse model; additionally, whether these outcomes are exacerbated by a high fat-diet investigated. An environmentally relevant concentration of a mixture of vehicle engine exhaust (MVE) was used. To investigate the hypotheses, 12 wk old male C57Bl/6 mice on either a high fat (HF) or low fat (LF) diet were randomly assigned to inhalational exposure of either filtered-air (FA) or 30 µg PM/m3 diesel exhaust + 70 µg PM/m3 gasoline exhaust (MVE) for 6 hr/day for 30 days. Additionally, we examined mechanisms involved in MVE-mediated alterations BBB integrity using a novel BBB co-culture in vitro model, consisting of mouse primary cerebral vascular endothelial cells on an apical transwell and astrocytes in the basal compartment, which was treated with plasma from the mice on our exposure study. Our in vivo exposure study results showed that MVE inhalation resulted in increased circulating plasma oxLDL and Ang II, compared to FA controls. Additionally, we observed increased cerebral microvascular expression of oxLDL receptors, LOX-1 and CD-36, and Ang II receptor subtype 1 (AT1) in …
Date: August 2020
Creator: Suwannasual, Usa
System: The UNT Digital Library
CO2 Transport and Acid-Base Status during Fluctuations in Metabolic Status in Reptiles (open access)

CO2 Transport and Acid-Base Status during Fluctuations in Metabolic Status in Reptiles

Reptiles can often experience perturbations that greatly influence their metabolic status (e.g., temperature, exercise, digestion, and ontogeny). The most common cause of fluctuations in metabolic status in post-embryonic reptiles is arguably digestion and physical activity (which will be further referred to as exercise). The objective of this thesis is to determine the mechanisms involved in CO2 transport during digestion, determine the mechanisms that allow for the maintenance of acid-base homeostasis during digestion, and observing the effect of an understudied form of exercise in semi-aquatic reptiles on the regulation of metabolic acidosis and base deficit. This dissertation provided evidence for potentially novel and under investigated mechanisms for acid-base homeostasis (e.g., small intestine and tissue buffering capacity; Chapters 3 & 4), while also debunking a proposed hypothesis for the function of an anatomical feature that still remains a mystery to comparative physiologist (Chapter 2). This thesis is far from systematic and exhaustive in its approach, however, the work accomplished in this dissertation has become the foundation for multiple distinct paths for ecologically relevant investigations of the regulation of metabolic acidosis/alkalosis in reptiles.
Date: December 2021
Creator: Conner, Justin Lawrence
System: The UNT Digital Library

Investigating the Effects of Traffic-Generated Air-Pollution on the Microbiome and Immune Responses in Lungs of Wildtype Mice

There is increasing evidence indicating that exposure to air pollutants may be associated with the onset of several respiratory diseases such as allergic airway disease and chronic obstructive pulmonary disorder (COPD). Many lung diseases demonstrate an outgrowth of pathogenic bacteria belonging to the Proteobacteria phylum, and the incidence of occurrence of these diseases is higher in heavily polluted regions. Within the human body, the lungs are among the first to be exposed to the harmful effects of inhaled pollutants and microbes. Research in the past few decades have expounded on the air-pollution-induced local and systemic inflammatory responses, but the involvement of the lung microbial communities has not yet been well-characterized. Lungs were historically considered to be sterile, but recent advances have demonstrated that the lower respiratory tract is replete with a wide variety of microorganisms - both in health and disease. Recent studies show that these lung microbes may play a significant role in modulating the immune environment by inducing IgA and mucus production. Air pollutants have previously been shown to alter intestinal bacterial populations that increase susceptibility to inflammatory diseases; however, to date, the effects of traffic-generated air pollutants on the resident microbial communities on the lungs have not …
Date: December 2020
Creator: Daniel, Sarah
System: The UNT Digital Library

Alterations in the Expression of Proteins Associated with Non-Alcoholic Fatty Liver Disease Observed in the Liver of the C57Bl/6 Wild-Type Male Mouse in Response to Exposure of Mixed Vehicle Emissions and/or High Fat Diet Consumption

Recent epidemiological studies have demonstrated a correlation between the manifestation of non-alcoholic fatty liver disease (NAFLD) and ambient air pollution levels, which is exacerbated by the presence of other risk factors, such as diabetes, dyslipidemia, obesity, and hypertension. We investigated the hypothesis that exposure to a mixture of gasoline and diesel engine emissions (MVE) coupled with the concurrent consumption of a high-fat (HF) diet promotes the development of a NAFLD phenotype within the liver. Three-month-old male C57Bl/6 mice were placed on either a low fat or HF diet and exposed via whole-body inhalation to either filtered (FA) air or MVE (30 µg PM/m3 gasoline engine emissions + 70 µg PM/m3 diesel engine emissions) 6 hr/day for 30 days. Histology revealed mild microvesicular steatosis and hepatocyte hypertrophy in response to MVE exposure alone, compared to FA controls, yielding a classification of "borderline NASH" under the criteria of the modified NAFLD active score (NAS) system. As anticipated, animals on a HF diet exhibited moderate steatosis; however, we also observed inflammatory infiltrates, hepatocyte hypertrophy, and increased lipid accumulation, with the combined effect of HF diet and MVE exposure. Immunofluorescence staining and RT-qPCR of the liver revealed the presence of lipid peroxidation, altered expression …
Date: December 2022
Creator: Schneider, Leah Jayne
System: The UNT Digital Library
Multi-Level Effects of Oxygen Exposure in Endothermic Insects (open access)

Multi-Level Effects of Oxygen Exposure in Endothermic Insects

This dissertation examined the phenotypic plasticity of endothermic, flight and respiratory physiology in response to developmental oxygen exposure in the moth Manduca sexta. Development in both 10% O2 hypoxia and 30% O2 hyperoxia treatments were used to look at the physiological consequence on both ends of the oxygen spectrum. Hypoxic insects reached smaller sizes as adults and had longer pupation lengths than controls. Hyperoxic insects were larger at the end of the larval stage, had increased larval growth rates, but also had longer developmental larval developmental times and pupation lengths than controls. There was a decrease in both metabolic rate and thorax temperatures of hypoxic reared insects at normoxic levels. In flight trials hypoxic insects had the lowest critical flight PO2, and the hyperoxic insects had the highest PO2. There was an increase in hypoxic insect flight muscle mitochondria oxygen consumption in permeabilized fibers, but this did not translate to the isolated flight muscle mitochondria metabolic rates. Rearing oxygen level did not significantly affect mitochondrial density and size; myofibril density and size, or tracheal density and size in flight muscle. Overall, I found that higher levels of organization were more susceptible to the effects of chronic oxygen exposure and found …
Date: August 2022
Creator: Wilmsen, Sara M
System: The UNT Digital Library
Analysis of the Accumulation, Toxic Effects, and Risk of Persistent Organic Pollutants in Pinnipeds (open access)

Analysis of the Accumulation, Toxic Effects, and Risk of Persistent Organic Pollutants in Pinnipeds

The present studies determine the accumulation of persistent organic pollutants (POPs) in three pinniped species, evaluate the relationship with relevant biomarkers of exposure, and calculate toxic effect thresholds. Stranded harp and hooded seals were found to be accumulating PBDEs at levels which could pose a based on threshold levels determined in this study. Northern fur seals are accumulating all three classes of POPs (PCBs, PBDEs, and OCPs) with significant relationships being seen with blubber percent lipid. Correlations between contaminant concentrations and expression levels of relevant biomarkers were seen potentially indicating an effect on multiple pathways. Overall risk can be hard to determine due to factors such as sex and age. Broad threshold response values and hazard quotients were calculated for toxic effect endpoints in pinnipeds. Overall these results suggest that certain populations of pinnipeds are at high risk of experiencing toxic effects due to POP exposure, but it is important to understand effects even at lower concentrations. The relationship between exposure, toxic effects, and other stressors, both environmental and physiological, can impact the overall fitness and survival of pinnipeds.
Date: August 2021
Creator: Soulen, Brianne K
System: The UNT Digital Library

Production and Optimization of Para-Hydroxybenzoic Acid (pHBA) in Algae Using Metabolic Engineering and Genomics Approaches

Microalgae being photosynthetic and having quick growth cycles can prove to be excellent candidates as biofactories for the production of aromatic compounds like para-hydroxybenzoic acid (pHBA) that act as a monomer in liquid crystal polymers. We developed transgenic lines of the model alga Chlamydomonas reinhardtii by performing nuclear transformation using electroporation. The transgenic cell lines expressed the ubiC gene that utilized chorismate from the shikimate pathway as a substrate to produce pHBA. The maximum yield of pHBA measured in these lines was 80 mg/L. Accruing pHBA can be toxic to the cells and the mechanism by which C. reinhardtii could detoxify pHBA is not known. C. reinhardtii genome was thus scanned for sequences similar to UDP-glucosyltransferase (UGT) that can transfer the glucose moiety to pHBA, rendering it non-toxic to the cell lines. Our analysis suggested the absence of any potential UGTs that could glycosylate pHBA and detoxify it. We further performed feeding experiments to test the ability of wt-type C. reinhardtii cells to detoxify pHBA and understand its fate. C. reinhardtii cells were fed with varying concentrations of pHBA and harvested at different time intervals. The HPLC chromatograms indicated a majority of the pHBA was catabolized. Based on these results, …
Date: December 2021
Creator: Saxena, Garima Girish
System: The UNT Digital Library
Migration Tracking, Survival, and Pairing Behavior of American Kestrels Wintering in North Central Texas (open access)

Migration Tracking, Survival, and Pairing Behavior of American Kestrels Wintering in North Central Texas

The American Kestrel (Falco sparverius) is the smallest and most abundant falcon in North America with a wide geographic range. Unfortunately, surveys have suggested that some kestrel populations have been in decline since the 1950s, though the nominal causes of this decline are unknown. Migratory movement patterns and connectivity have yet to be established for any population of migratory kestrels. In Chapter 2, I investigated methods for attaching migration trackers to kestrels. Specifically, I showed that leg-loop style harnesses may have negatively affected return rates whereas backpack harnesses did not. Based on these results, I recommend that backpack-style Teflon harnesses is the safest and most effective method for attaching tracking devices to small raptors. In Chapter 3, I quantified survivorship for kestrels wintering in north Texas to identify the timing of kestrel mortality. Notably, I found that juvenile kestrels had similar annual survival rates as adults (81.6% versus 79.5%). High overwintering survival in north Texas indicated that once kestrels arrived on their wintering grounds, they were highly likely to survive to spring migration. In Chapter 4, I investigated pairing behaviors previously undocumented in wintering kestrels. I found that winter pairing was relatively common, but more prevalent in urban environments than …
Date: December 2022
Creator: Biles, Kelsey S
System: The UNT Digital Library
The Ecological Importance and Population Structure of Magellanic Woodpeckers (Campephilus magellanicus) in the World's Southernmost Forests (open access)

The Ecological Importance and Population Structure of Magellanic Woodpeckers (Campephilus magellanicus) in the World's Southernmost Forests

The Magellanic woodpecker (Campephilus magellanicus), the largest woodpecker in Central and South America, is declining throughout its range. Notably, limited research has been conducted on the Campephilus genus, especially for island populations. Mostly during austral summers 2015-2017, I explored the ecological importance and population structure of Magellanic woodpeckers on Navarino Island, Chile (55°04′S, 67°40′W). First, I assessed how coleopteran larval density and distribution within trees may influence Magellanic woodpecker foraging behavior. Second, I designed an experiment to determine which of three detection methods would best elicit a woodpecker detection. Third, I conducted a population genetics study to elucidate trends within and among Magellanic woodpecker populations to better inform management decisions. I identified two coleopteran species: one lucanid (Erichius femoralis) and one cerambycid (Microplophorus magellanicus) within two lenga (Nothofagus pumilio) trees foraged on by Magellanic woodpeckers. Maximum woodpecker excavation depths were 71-90 mm; most larval gallery depths were 51-70 mm. The drumming device most effectively influenced the likelihood of a woodpecker detection. The odds of a woodpecker responding were 2.14 times more likely than responding to either a playback or control. On Navarino Island, I observed a pattern of isolation by distance among sampled woodpeckers, slight female sex-biased dispersal, and family …
Date: May 2020
Creator: Wynia, Amy Lynn
System: The UNT Digital Library

Multiple Dimensions of Fish Functional Traits, Trait Relationships, and Associations with Community Structure and Dynamics

Trait-based approaches are useful in ecological research because of their potential ability to predict species responses from patterns present in the community and to infer mechanisms driving community assembly. Current approaches for fishes are lacking traits across all five fundamental niche dimensions (i.e. habitat, life history, trophic, metabolic and defense). This study quantified a broad range of fish functional traits across all five niche dimensions (commonly used traits and novel traits), quantified intra- and interspecific variation for each trait, tested for relationships among traits within and among niche dimensions, tested for phylogenetic conservatism of traits and assessed trait-environment relationships for a subset of these traits under two different contexts. Approximately one third of the quantified traits exhibited greater intraspecific variation than interspecific variation and were not included in subsequent analyses. There were similarities between phylogeny and trait dendrograms for all traits, and habitat, metabolic and defense traits. The traits identified in chapter 2 were able to explain species responses during different flow periods in two intermittent streams as well as species-specific differences in host microbiome at the onset of drought in one intermittent stream. The novel traits identified in chapter 2 did contribute to our understanding of the community assembly …
Date: December 2021
Creator: Harried, Brittany Lee
System: The UNT Digital Library

Traffic-Generated Air Pollution-Exposure Mediated Expression of Factors Associated with Progression of Multiple Sclerosis in a Female Polipoprotein E Knockout Mouse Model

Environmental air pollution is one risk factor associated with the onset and progression of multiple sclerosis (MS). In this project, we investigated the effects of ubiquitous traffic-generated pollutants, namely a mixture of gasoline and diesel vehicle exhaust (MVE), on signaling pathways associated with the pathophysiology of MS in the central nervous system (CNS) of either ovary intact (ov+) or ovariectomized (ov-) female Apolipoprotein (Apo) E-/-. Specifically, we investigated whether a subchronic inhalation exposure to MVE (200 PM μg/m3; 6 hr/d, 7d/wk, 30d) vs. filtered air (FA) controls altered myelination, T cell infiltration, blood-brain barrier (BBB) integrity, or production of reactive oxygen species (ROS) and expression of neuroinflammation markers in the CNS ov+ and ov- Apo E-/- mice. Our results revealed that inhalation exposure to MVE resulted in increased demyelination and CD4+ and CD8+ T cell infiltration, associated with alterations in BBB integrity. Disruption of the BBB was evidenced by decreased tight junction (TJ) protein expression, increased matrix metalloproteinase (MMPs) activity, and increased permeability of immunoglobin (Ig) G, which were more pronounced in the MVE ov- group. Moreover, MVE-exposure also promoted ROS and neuroinflammatory signaling in the CNS of ov+ and ov- mice, compared to FA groups. To analyze mechanisms that …
Date: December 2020
Creator: Adivi, Anna
System: The UNT Digital Library
Breeding Ecology and Migratory Connectivity of Passerines in the World's Southernmost Forests (open access)

Breeding Ecology and Migratory Connectivity of Passerines in the World's Southernmost Forests

In the extensive and remote sub-Antarctic forests of South America, birds are the dominant terrestrial vertebrates. Despite considerable efforts to understand the ecology of birds breeding in these forests, our current knowledge for many species is still incomplete. During three breeding seasons (2014 – 2017), I studied the breeding ecology of the five most abundant open-cup forest-dwelling passerines in the sub-Antarctic forest of Navarino Island, Chile (55°04′S, 67°40′W). There were differences in some of the breeding strategies used by birds breeding on Navarino Island versus conspecific populations breeding at lower latitudes. Milvago chimango was the main nest predator of open-cup nesting forest passerines, and the main cause of nest failure. In addition, I found that species built their nests in sites with higher density and taller understory; however, these two factors decreased their nest survival. This mismatch could be due to a change in depredation risk on Navarino Island, and thus, passerines breeding there may be in an ecological trap. In addition, using light-level geolocators, I determined that the migratory connectivity of Elaenia albiceps is weak as a result of the large spatial spread of individuals on the wintering ground, and that the distances among individuals on the breeding grounds …
Date: May 2021
Creator: Jara Millar, Rocio Fernanda
System: The UNT Digital Library

Benefits of Probiotics on Mortality, Growth Performance, Physiological Condition and Gut Histomophology of Juvenile Red Drum (Sciaenops ocellatus)

Results from the present study found for the first time that the use of bacterial strains of Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium thermophilum, and Enterococcus faecium from the commercial product PrimaLac® had the potential to act as a possible probiotic for juvenile red drum. The addition of PrimaLac® probiotics [whether as a water-soluble probiotic (WSP) or in a probiotic enhanced starter feed (PESF)] reduced mortality (%M), enhanced growth rates (MW, LT, SGR, and DGR), improved feed conversion efficiencies (FCEs), and physical condition factors in the juvenile red drum. Improvement was quantified using external morphological condition indices (MCIs) and blood physiological condition indices (PCIs). Results showed a strong positive relationship between MCIs and PCIs, which suggested that probiotics treated fish were in better health (lower MCIs) with lower fasting blood glucose and lactate levels than control fish. Addition of probiotics also resulted in improved water quality (lower nitrate, nitrite, and ammonia) in the treatment tanks compared to controls. Application of PrimaLac® probiotics on the morphology and histology of three different regions of the intestine (proximal, mid-and distal) improved intestinal length (Li), mass (Mi), and digesta mass (Md). In 5μm histological sections examined for differences among treatments (probiotics vs. controls), five variables …
Date: May 2021
Creator: Busby, Wren Adell
System: The UNT Digital Library

Regulation of Receptors in Neuronal Cilia with Development, Seizures, and Knockouts: Implications for Excitability

Neurons commonly have a primary cilium, which is a non-motile organelle extending from the centrosome into the extracellular space. In most brain regions, neuronal cilia are enriched in either somatostatin receptor type 3 (SstR3) or melanin concentrating hormone receptor type 1 (MCHR1), or both. The present immunohistochemical study provides novel evidence that primary cilia regulate neuronal excitability via G-protein coupled receptors (GPCRs), and that their identity is governed by brain region and by competition, both in adulthood and in postnatal development. The hippocampus, which is particularly vulnerable to seizures, has opposing gradients of SstR3(+) and MCHR1(+) ciliary GPCRs. We hypothesized that there is a competition between these two ciliary GPCRs, which might take place on any level from gene expression to presence in the cilium. We examined whether receptor colocalization occurs transiently in development before ciliary GPCR dominance is established in neurons in the CNS. In postnatal CA1 and CA3, the first GPCR to appear in cilia was the one that will dominate in adults: MCHR1 in CA1 and SstR3 in CA3. Some days later, the second GPCR was expressed along with the first; dual-receptor cilia were the exclusive type until single-receptor cilia emerged again around P14. Single-receptor cilia then …
Date: August 2022
Creator: Shrestha, Jessica
System: The UNT Digital Library

Inferring a Network of Horizontal Gene Flow among Prokaryotes Using Complementary Approaches

Horizontal gene transfer (HGT), a mechanism that facilitates exchange of genetic material between organisms from different lineages, has a profound impact on prokaryotic evolution. To infer HGT, we first developed a comparative genomics-based tool, APP, which can perform phyletic pattern analysis using completely sequenced genomes to identify genes are unique to a genome or have sporadic distribution in its close relatives. Performance assessment against currently available tools on a manually created 18-genome dataset and 2 benchmarking datasets revealed the superior accuracy of APP over other methods. We then utilized a parametric method to construct a gene exchange network. The composition-based method, Jenson-Shannon Codon Bias (JS-CB), groups genes into clusters based on similar codon usage bias. These clusters were analyzed using APP and examined for the enrichment HGT associated marker genes, then annotated as of native or alien origin based on these multiple lines of evidence. Intergenome clustering enabled identification of genes mobilized across alien components of the genomes (alien-alien transfer) and from native components of donor genomes to the recipient genomes (native-alien transfer). Functional classification of alien gene clusters revealed that metabolism associated genes are most frequently mobilized, in concurrence with previous reports, and additionally, a large number of genes …
Date: August 2022
Creator: Sengupta, Soham
System: The UNT Digital Library

Temperature Change and Its Consequences for the Physiology of the Eurythermic Sheepshead Minnow (Cyprinodon variegatus)

The estuarine sheepshead minnow (Cyprinodon variegatus) is the most eurythermic fish species, with a thermal tolerance window between 0.6°C and 45.1°C. However, little is known about the physiological mechanisms that allow this species to survive this temperature range. In order to understand how sheepshead minnow physiology is affected by temperature acclimation and acute changes in temperature, I conducted research on this species using a multi-level approach. I began at the organismal level, and examined the effects of these temperature changes on the sheepshead minnow's metabolic rate and swimming performance. The next chapter investigated the effects of changing temperatures on cardiac function (i.e., tissue/organ specific effects). In the final chapter, I conducted research at the sub-cellular level, and determined how mitochondrial bioenergetics / function is impacted by changing temperatures. This research shows that while sheepshead minnows are able to sustain heart function and mitochondrial respiration over a broad range of temperatures; they also display a plastic temperature response which is associated with the downregulation of standard metabolic rate and cardiac remodeling to maintain force generation. Collectively, these physiological responses may contribute to the sheepshead minnow's ability to maintain physiological and organismal function across a large temperature range.
Date: August 2022
Creator: Reynolds, Amanda Caroline
System: The UNT Digital Library

Probabilistic Modeling for Whole Metagenome Profiling

To address the shortcomings in existing Markov model implementations in handling large amount of metagenomic data with comparable or better accuracy in classification, we developed a new algorithm based on pseudo-count supplemented standard Markov model (SMM), which leverages the power of higher order models to more robustly classify reads at different taxonomic levels. Assessment on simulated metagenomic datasets demonstrated that overall SMM was more accurate in classifying reads to their respective taxa at all ranks compared to the interpolated methods. Higher order SMMs (9th order or greater) also outperformed BLAST alignments in assigning taxonomic labels to metagenomic reads at different taxonomic ranks (genus and higher) on tests that masked the read originating species (genome models) in the database. Similar results were obtained by masking at other taxonomic ranks in order to simulate the plausible scenarios of non-representation of the source of a read at different taxonomic levels in the genome database. The performance gap became more pronounced with higher taxonomic levels. To eliminate contaminations in datasets and to further improve our alignment-free approach, we developed a new framework based on a genome segmentation and clustering algorithm. This framework allowed removal of adapter sequences and contaminant DNA, as well as generation …
Date: May 2021
Creator: Burks, David
System: The UNT Digital Library

Analysis of Multipartite Bacterial Genomes Using Alignment-Free and Alignment-Based Pipelines

In this work, we have performed comparative evolutionary analysis, functional genomics analysis, and machine learning analysis to identify the molecular factors that discriminate between multipartite and unipartite bacteria, with the goal to decipher taxon-specific factors and those that are prevalent across the taxa underlying the these traits. We assessed the roles of evolutionary mechanisms, namely, horizontal gene transfer and gene gain, in driving the divergence of bacteria with single and multiple chromosomes. In addition, we performed functional genomic analysis to garner support for our findings from comparative evolutionary analysis. We found genes such as those encoding conserved hypothetical protein DR_A0179 and hypothetical protein DR_A0109 in Deinococcus radiodurans R1, and Putative phage phi-C31 gp36 major capsid-like protein and hypothetical protein RSP_3729 in Rhodobacter sphaeroides 2.4.1, which are located on accessory chromosomes in both bacteria and were not found in the inferred ancestral sequences, and on the primary chromosomes, as well as were not found in their closest relatives with single chromosome within the same clade. These genes emphasize the important potential roles of the secondary chromosomes in helping multipartite bacteria to adapt to specialized environments or conditions. In addition, we applied machine learning algorithms to predict multipartite genomes based on gene …
Date: August 2021
Creator: Almalki, Fatemah
System: The UNT Digital Library

Investigating the Effects of Inhaled Diesel Exhaust Particles on Gut Microbiome, Intestinal Integrity, Systemic Inflammation, and Biomarkers of Cardiovascular Disease in Wildtype Mice

We investigated the hypothesis that exposure to inhaled diesel exhaust PM can alter the gut microbiome and intestinal integrity, thereby promoting systemic inflammatory response and early CVD risk, which are exacerbated by HF diet. Furthermore, we investigated whether the observed exposure and diet-mediated outcomes could be mitigated through probiotic treatment. We performed an exposure study on C57Bl/6 male mice, placed on either a low fat (LF) diet or a high-fat (HF) diet, and exposed via oropharyngeal aspiration to 35 μg diesel exhaust particles (DEP) suspended in 35 μl of sterile saline or sterile saline controls (CON) twice a week for four weeks. A subset of mice on HF diet were dosed with 0.3 g/day (PRO, ~7.5x108 CFU/day) of probiotic Ecologic® Barrier 849 (Winclove Probiotics) in drinking water during the course of the study. For our first aim, we investigated the alterations in the gut microbiome, measured circulating cytokines and lipopolysaccharide (LPS), and measured CVD biomarkers in the heart. Our results revealed that exposure to inhaled DEP results in gut dysbiosis characterized by expansion of the phyla Verrucomicrobia and Proteobacteria and reduction in Actinobacteria, which was exacerbated by HF diet. Probiotics mitigated the DEP-mediated expansion of Proteobacteria and re-established Actinobacteria in …
Date: December 2021
Creator: Phillippi, Danielle T.
System: The UNT Digital Library

Developmental Effects of a Non-Dioxin-Like Polychlorinated Biphenyl Mixture on Zebrafish (Danio rerio)

PCBs are synthetic organic compounds known for their toxicity to many organisms and are notorious for having large discrepancies between measured and nominal concentrations. Historically thought to be less toxic, non-dioxin-like (NDL) PCBs represent the majority of congeners and are capable of eliciting neurotoxic effects. NDL-PCBs remain understudied, including their effects on aquatic organisms. In the first study, I collected extensive chemistry data and data on neurobehavioral and cardiac endpoints to test the acute effects of exposure to an NDL-PCB mixture on early life stage zebrafish. Neurobehavioral effects observed in the first study indicated a potential for longer term behavioral effects in these fish. In the second study, I collected data on feeding, social, and memory behavior of zebrafish at time points beyond the acute exposure from the first study. Acute and longer-term behavioral endpoints in the first and second studies demonstrated effects from PCB exposure but did not indicate mechanisms. In the third study, I collected untargeted and targeted metabolomic data on amino acid, sugar, anionic compound, and neurotransmitter profiles to determine the specific pathways affected by exposure to an NDL-PCB mixture. These combined data from these studies provide a unique insight into the chemical profile of an NDL-PCB …
Date: July 2023
Creator: Green, Corey
System: The UNT Digital Library