Deep Learning Optimization and Acceleration

The novelty of this dissertation is the optimization and acceleration of deep neural networks aimed at real-time predictions with minimal energy consumption. It consists of cross-layer optimization, output directed dynamic quantization, and opportunistic near-data computation for deep neural network acceleration. On two datasets (CIFAR-10 and CIFAR-100), the proposed deep neural network optimization and acceleration frameworks are tested using a variety of Convolutional neural networks (e.g., LeNet-5, VGG-16, GoogLeNet, DenseNet, ResNet). Experimental results are promising when compared to other state-of-the-art deep neural network acceleration efforts in the literature.
Date: August 2022
Creator: Jiang, Beilei
System: The UNT Digital Library

Advanced Stochastic Signal Processing and Computational Methods: Theories and Applications

Compressed sensing has been proposed as a computationally efficient method to estimate the finite-dimensional signals. The idea is to develop an undersampling operator that can sample the large but finite-dimensional sparse signals with a rate much below the required Nyquist rate. In other words, considering the sparsity level of the signal, the compressed sensing samples the signal with a rate proportional to the amount of information hidden in the signal. In this dissertation, first, we employ compressed sensing for physical layer signal processing of directional millimeter-wave communication. Second, we go through the theoretical aspect of compressed sensing by running a comprehensive theoretical analysis of compressed sensing to address two main unsolved problems, (1) continuous-extension compressed sensing in locally convex space and (2) computing the optimum subspace and its dimension using the idea of equivalent topologies using Köthe sequence. In the first part of this thesis, we employ compressed sensing to address various problems in directional millimeter-wave communication. In particular, we are focusing on stochastic characteristics of the underlying channel to characterize, detect, estimate, and track angular parameters of doubly directional millimeter-wave communication. For this purpose, we employ compressed sensing in combination with other stochastic methods such as Correlation Matrix Distance …
Date: August 2022
Creator: Robaei, Mohammadreza
System: The UNT Digital Library

Helping Students with Upper Limb Motor Impairments Program in a Block-Based Programming Environment Using Voice

Students with upper body motor impairments, such as cerebral palsy, multiple sclerosis, ALS, etc., face challenges when learning to program in block-based programming environments, because these environments are highly dependent on the physical manipulation of a mouse or keyboard to drag and drop elements on the screen. In my dissertation, I make the block-based programming environment Blockly, accessible to students with upper body motor impairment by adding speech as an alternative form of input. This voice-enabled version of Blockly will reduce the need for the use of a mouse or keyboard, making it more accessible to students with upper body motor impairments. The voice-enabled Blockly system consists of the original Blockly application, a speech recognition API, predefined voice commands, and a custom function. Three user studies have been conducted, a preliminary study, a usability study, and an A/B test. These studies revealed a lot of information, such as the need for simpler, shorter, and more intuitive commands, the need to change the target audience, the shortcomings of speech recognition systems, etc. The feedback received from each study influenced design decisions at different phases. The findings also gave me insight into the direction I would like to go in the future. …
Date: August 2022
Creator: Okafor, Obianuju Chinonye
System: The UNT Digital Library