Degree Discipline

Red Door: Firewall Based Access Control in ROS

ROS is a set of computer operating system framework designed for robot software development, and Red Door, a lightweight software firewall that serves the ROS, is intended to strengthen its security. ROS has many flaws in security, such as clear text transmission of data, no authentication mechanism, etc. Red Door can achieve identity verification and access control policy with a small performance loss, all without modifying the ROS source code, to ensure the availability and authentication of ROS applications to the greatest extent.
Date: December 2020
Creator: Shen, Ziyi
System: The UNT Digital Library
A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles (open access)

A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles

As the technology in the field of computer vision becomes more and more mature, the autonomous vehicles have achieved rapid developments in recent years. However, the object detection and classification tasks of autonomous vehicles which are based on cameras may face problems when the vehicle is driving at a relatively high speed. One is that the camera will collect blurred photos when driving at high speed which may affect the accuracy of deep neural networks. The other is that small objects far away from the vehicle are difficult to be recognized by networks. In this paper, we present a method to combine two kinds of GANs to solve these problems. We choose DeblurGAN as the base model to remove blur in images. SRGAN is another GAN we choose for solving small object detection problems. Due to the total time of these two are too long, we still do the model compression on it to make it lighter. Then we use the Yolov4 to do the object detection. Finally we do the evaluation of the whole model architecture and proposed a model version 2 based on DeblurGAN and ESPCN which is faster than previous one but the accuracy may be lower.
Date: December 2020
Creator: Ye, Fanjie
System: The UNT Digital Library