Advanced Stochastic Signal Processing and Computational Methods: Theories and Applications

Compressed sensing has been proposed as a computationally efficient method to estimate the finite-dimensional signals. The idea is to develop an undersampling operator that can sample the large but finite-dimensional sparse signals with a rate much below the required Nyquist rate. In other words, considering the sparsity level of the signal, the compressed sensing samples the signal with a rate proportional to the amount of information hidden in the signal. In this dissertation, first, we employ compressed sensing for physical layer signal processing of directional millimeter-wave communication. Second, we go through the theoretical aspect of compressed sensing by running a comprehensive theoretical analysis of compressed sensing to address two main unsolved problems, (1) continuous-extension compressed sensing in locally convex space and (2) computing the optimum subspace and its dimension using the idea of equivalent topologies using Köthe sequence. In the first part of this thesis, we employ compressed sensing to address various problems in directional millimeter-wave communication. In particular, we are focusing on stochastic characteristics of the underlying channel to characterize, detect, estimate, and track angular parameters of doubly directional millimeter-wave communication. For this purpose, we employ compressed sensing in combination with other stochastic methods such as Correlation Matrix Distance …
Date: August 2022
Creator: Robaei, Mohammadreza
System: The UNT Digital Library
An Artificial Intelligence-Driven Model-Based Analysis of System Requirements for Exposing Off-Nominal Behaviors (open access)

An Artificial Intelligence-Driven Model-Based Analysis of System Requirements for Exposing Off-Nominal Behaviors

With the advent of autonomous systems and deep learning systems, safety pertaining to these systems has become a major concern. The existing failure analysis techniques are not enough to thoroughly analyze the safety in these systems. Moreover, because these systems are created to operate in various conditions, they are susceptible to unknown safety issues. Hence, we need mechanisms which can take into account the complexity of operational design domains, identify safety issues other than failures, and expose unknown safety issues. Moreover, existing safety analysis approaches require a lot of effort and time for analysis and do not consider machine learning (ML) safety. To address these limitations, in this dissertation, we discuss an artificial-intelligence driven model-based methodology that aids in identifying unknown safety issues and analyzing ML safety. Our methodology consists of 4 major tasks: 1) automated model generation, 2) automated analysis of component state transition model specification, 3) undesired states analysis, and 4) causal factor analysis. In our methodology we identify unknown safety issues by finding undesired combinations of components' states and environmental entities' states as well as causes resulting in these undesired combinations. In our methodology, we refer to the behaviors that occur because of undesired combinations as off-nominal …
Date: May 2021
Creator: Madala, Kaushik
System: The UNT Digital Library

Autonomic Zero Trust Framework for Network Protection

With the technological improvements, the number of Internet connected devices is increasing tremendously. We also observe an increase in cyberattacks since the attackers want to use all these interconnected devices for malicious intention. Even though there exist many proactive security solutions, it is not practical to run all the security solutions on them as they have limited computational resources and even battery operated. As an alternative, Zero Trust Architecture (ZTA) has become popular is because it defines boundaries and requires to monitor all events, configurations, and connections and evaluate them to enforce rejecting by default and accepting only if they are known and accepted as well as applies a continuous trust evaluation. In addition, we need to be able to respond as quickly as possible, which cannot be managed by human interaction but through autonomous computing paradigm. Therefore, in this work, we propose a framework that would implement ZTA using autonomous computing paradigm. The proposed solution, Autonomic ZTA Management Engine (AZME) framework, focusing on enforcing ZTA on network, uses a set of sensors to monitor a network, a set of user-defined policies to define which actions to be taken (through controller). We have implemented a Python prototype as a proof-of-concept …
Date: May 2022
Creator: Durflinger, James
System: The UNT Digital Library
BC Framework for CAV Edge Computing (open access)

BC Framework for CAV Edge Computing

Edge computing and CAV (Connected Autonomous Vehicle) fields can work as a team. With the short latency and high responsiveness of edge computing, it is a better fit than cloud computing in the CAV field. Moreover, containerized applications are getting rid of the annoying procedures for setting the required environment. So that deployment of applications on new machines is much more user-friendly than before. Therefore, this paper proposes a framework developed for the CAV edge computing scenario. This framework consists of various programs written in different languages. The framework uses Docker technology to containerize these applications so that the deployment could be simple and easy. This framework consists of two parts. One is for the vehicle on-board unit, which exposes data to the closest edge device and receives the output generated by the edge device. Another is for the edge device, which is responsible for collecting and processing big load of data and broadcasting output to vehicles. So the vehicle does not need to perform the heavyweight tasks that could drain up the limited power.
Date: May 2020
Creator: Chen, Haidi
System: The UNT Digital Library

Blockchain for AI: Smarter Contracts to Secure Artificial Intelligence Algorithms

In this dissertation, I investigate the existing smart contract problems that limit cognitive abilities. I use Taylor's serious expansion, polynomial equation, and fraction-based computations to overcome the limitations of calculations in smart contracts. To prove the hypothesis, I use these mathematical models to compute complex operations of naive Bayes, linear regression, decision trees, and neural network algorithms on Ethereum public test networks. The smart contracts achieve 95\% prediction accuracy compared to traditional programming language models, proving the soundness of the numerical derivations. Many non-real-time applications can use our solution for trusted and secure prediction services.
Date: July 2023
Creator: Badruddoja, Syed
System: The UNT Digital Library
Building Reliable and Cost-Effective Storage Systems for High-Performance Computing Datacenters (open access)

Building Reliable and Cost-Effective Storage Systems for High-Performance Computing Datacenters

In this dissertation, I first incorporate declustered redundant array of independent disks (RAID) technology in the existing system by maximizing the aggregated recovery I/O and accelerating post-failure remediation. Our analytical model affirms the accelerated data recovery stage significantly improves storage reliability. Then I present a proactive data protection framework that augments storage availability and reliability. It utilizes the failure prediction methods to efficiently rescue data on drives before failures occur, which significantly reduces the storage downtime and lowers the risk of nested failures. Finally, I investigate how an active storage system enables energy-efficient computing. I explore an emerging storage device named Ethernet drive to offload data-intensive workloads from the host to drives and process the data on drives. It not only minimizes data movement and power usage, but also enhances data availability and storage scalability. In summary, my dissertation research provides intelligence at the drive, storage node, and system levels to tackle the rising reliability challenge in modern HPC datacenters. The results indicate that this novel storage paradigm cost-effectively improves storage scalability, availability, and reliability.
Date: August 2020
Creator: Qiao, Zhi
System: The UNT Digital Library

Combinatorial-Based Testing Strategies for Mobile Application Testing

This work introduces three new coverage criteria based on combinatorial-based event and element sequences that occur in the mobile environment. The novel combinatorial-based criteria are used to reduce, prioritize, and generate test suites for mobile applications. The combinatorial-based criteria include unique coverage of events and elements with different respects to ordering. For instance, consider the coverage of a pair of events, e1 and e2. The least strict criterion, Combinatorial Coverage (CCov), counts the combination of these two events in a test case without respect to the order in which the events occur. That is, the combination (e1, e2) is the same as (e2, e1). The second criterion, Sequence-Based Combinatorial Coverage (SCov), considers the order of occurrence within a test case. Sequences (e1, ..., e2) and (e2,..., e1) are different sequences. The third and strictest criterion is Consecutive-Sequence Combinatorial Coverage (CSCov), which counts adjacent sequences of consecutive pairs. The sequence (e1, e2) is only counted if e1 immediately occurs before e2. The first contribution uses the novel combinatorial-based criteria for the purpose of test suite reduction. Empirical studies reveal that the criteria, when used with event sequences and sequences of size t=2, reduce the test suites by 22.8%-61.3% while the reduced …
Date: December 2020
Creator: Michaels, Ryan P.
System: The UNT Digital Library

Cooperative Perception for Connected Autonomous Vehicle Edge Computing System

This dissertation first conducts a study on raw-data level cooperative perception for enhancing the detection ability of self-driving systems for connected autonomous vehicles (CAVs). A LiDAR (Light Detection and Ranging sensor) point cloud-based 3D object detection method is deployed to enhance detection performance by expanding the effective sensing area, capturing critical information in multiple scenarios and improving detection accuracy. In addition, a point cloud feature based cooperative perception framework is proposed on edge computing system for CAVs. This dissertation also uses the features' intrinsically small size to achieve real-time edge computing, without running the risk of congesting the network. In order to distinguish small sized objects such as pedestrian and cyclist in 3D data, an end-to-end multi-sensor fusion model is developed to implement 3D object detection from multi-sensor data. Experiments show that by solving multiple perception on camera and LiDAR jointly, the detection model can leverage the advantages from high resolution image and physical world LiDAR mapping data, which leads the KITTI benchmark on 3D object detection. At last, an application of cooperative perception is deployed on edge to heal the live map for autonomous vehicles. Through 3D reconstruction and multi-sensor fusion detection, experiments on real-world dataset demonstrate that a …
Date: August 2020
Creator: Chen, Qi
System: The UNT Digital Library

COVID-19 Diagnosis and Segmentation Using Machine Learning Analyses of Lung Computerized Tomography

COVID-19 is a highly contagious and virulent disease caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 disease induces lung changes observed in lung computerized tomography (CT) and the percentage of those diseased areas on the CT correlates with the severity of the disease. Therefore, segmentation of CT images to delineate the diseased or lesioned areas is a logical first step to quantify disease severity, which will help physicians predict disease prognosis and guide early treatments to deliver more positive patient outcomes. It is crucial to develop an automated analysis of CT images to save their time and efforts. This dissertation proposes CoviNet, a deep three-dimensional convolutional neural network (3D-CNN) to diagnose COVID-19 in CT images. It also proposes CoviNet Enhanced, a hybrid approach with 3D-CNN and support vector machines. It also proposes CoviSegNet and CoviSegNet Enhanced, which are enhanced U-Net models to segment ground-glass opacities and consolidations observed in computerized tomography (CT) images of COVID-19 patients. We trained and tested the proposed approaches using several public datasets of CT images. The experimental results show the proposed methods are highly effective for COVID-19 detection and segmentation and exhibit better accuracy, precision, sensitivity, specificity, F-1 score, Matthew's correlation coefficient (MCC), dice …
Date: August 2021
Creator: Mittal, Bhuvan
System: The UNT Digital Library
Deep Learning Approaches to Radio Map Estimation (open access)

Deep Learning Approaches to Radio Map Estimation

Radio map estimation (RME) is the task of predicting radio power at all locations in a two-dimensional area and at all frequencies in a given band. This thesis explores four deep learning approaches to RME: dual path autoencoders, skip connection autoencoders, diffusion, and joint learning with transmitter localization.
Date: July 2023
Creator: Locke IV, William Alexander
System: The UNT Digital Library

Deep Learning Methods to Investigate Online Hate Speech and Counterhate Replies to Mitigate Hateful Content

Hateful content and offensive language are commonplace on social media platforms. Many surveys prove that high percentages of social media users experience online harassment. Previous efforts have been made to detect and remove online hate content automatically. However, removing users' content restricts free speech. A complementary strategy to address hateful content that does not interfere with free speech is to counter the hate with new content to divert the discourse away from the hate. In this dissertation, we complement the lack of previous work on counterhate arguments by analyzing and detecting them. Firstly, we study the relationships between hateful tweets and replies. Specifically, we analyze their fine-grained relationships by indicating whether the reply counters the hate, provides a justification, attacks the author of the tweet, or adds additional hate. The most obvious finding is that most replies generally agree with the hateful tweets; only 20% of them counter the hate. Secondly, we focus on the hate directed toward individuals and detect authentic counterhate arguments from online articles. We propose a methodology that assures the authenticity of the argument and its specificity to the individual of interest. We show that finding arguments in online articles is an efficient alternative compared to …
Date: May 2023
Creator: Albanyan, Abdullah Abdulaziz
System: The UNT Digital Library

Deep Learning Optimization and Acceleration

The novelty of this dissertation is the optimization and acceleration of deep neural networks aimed at real-time predictions with minimal energy consumption. It consists of cross-layer optimization, output directed dynamic quantization, and opportunistic near-data computation for deep neural network acceleration. On two datasets (CIFAR-10 and CIFAR-100), the proposed deep neural network optimization and acceleration frameworks are tested using a variety of Convolutional neural networks (e.g., LeNet-5, VGG-16, GoogLeNet, DenseNet, ResNet). Experimental results are promising when compared to other state-of-the-art deep neural network acceleration efforts in the literature.
Date: August 2022
Creator: Jiang, Beilei
System: The UNT Digital Library
Design of a Low-Cost Spirometer to Detect COPD and Asthma for Remote Health Monitoring (open access)

Design of a Low-Cost Spirometer to Detect COPD and Asthma for Remote Health Monitoring

This work develops a simple and low-cost microphone-based spirometer with a scalable infrastructure that can be used to monitor COPD and Asthma symptoms. The data acquired from the system is archived in the cloud for further procuring and reporting. To develop this system, we utilize an off-the-shelf ESP32 development board, MEMS microphone, oxygen mask, and 3D printable mounting tube to keep the costs low. The system utilizes the MEMS microphone to measure the audio signal of a user's exhalation, calculates diagnostic estimations and uploads the estimations to the cloud to be remotely monitored. Our results show a practical system that can identify COPD and Asthma symptoms and report the data to both the patient and the physician. The system developed can provide a means of gathering respiratory data to better assist doctors and assess patients to provide remote care.
Date: May 2022
Creator: Olvera, Alejandro
System: The UNT Digital Library

Determining Event Outcomes from Social Media

An event is something that happens at a time and location. Events include major life events such as graduating college or getting married, and also simple day-to-day activities such as commuting to work or eating lunch. Most work on event extraction detects events and the entities involved in events. For example, cooking events will usually involve a cook, some utensils and appliances, and a final product. In this work, we target the task of determining whether events result in their expected outcomes. Specifically, we target cooking and baking events, and characterize event outcomes into two categories. First, we distinguish whether something edible resulted from the event. Second, if something edible resulted, we distinguish between perfect, partial and alternative outcomes. The main contributions of this thesis are a corpus of 4,000 tweets annotated with event outcome information and experimental results showing that the task can be automated. The corpus includes tweets that have only text as well as tweets that have text and an image.
Date: May 2020
Creator: Murugan, Srikala
System: The UNT Digital Library

Encrypted Collaborative Editing Software

Cloud-based collaborative editors enable real-time document processing via remote connections. Their common application is to allow Internet users to collaboratively work on their documents stored in the cloud, even if these users are physically a world apart. However, this convenience comes at a cost in terms of user privacy. Hence, the growth of popularity of cloud computing application stipulates the growth in importance of cloud security. A major concern with the cloud is who has access to user data. In order to address this issue, various third-party services offer encryption mechanisms for protection of the user data in the case of insider attacks or data leakage. However, these services often only encrypt data-at-rest, leaving the data which is being processed potentially vulnerable. The purpose of this study is to propose a prototype software system that encrypts collaboratively edited data in real-time, preserving the user experience similar to that of, e.g., Google Docs.
Date: May 2020
Creator: Tran, Augustin
System: The UNT Digital Library
Epileptic Seizure Detection and Control in the Internet of Medical Things (IoMT) Framework (open access)

Epileptic Seizure Detection and Control in the Internet of Medical Things (IoMT) Framework

Epilepsy affects up to 1% of the world's population and approximately 2.5 million people in the United States. A considerable portion (30%) of epilepsy patients are refractory to antiepileptic drugs (AEDs), and surgery can not be an effective candidate if the focus of the seizure is on the eloquent cortex. To overcome the problems with existing solutions, a notable portion of biomedical research is focused on developing an implantable or wearable system for automated seizure detection and control. Seizure detection algorithms based on signal rejection algorithms (SRA), deep neural networks (DNN), and neighborhood component analysis (NCA) have been proposed in the IoMT framework. The algorithms proposed in this work have been validated with both scalp and intracranial electroencephalography (EEG, icEEG), and demonstrate high classification accuracy, sensitivity, and specificity. The occurrence of seizure can be controlled by direct drug injection into the epileptogenic zone, which enhances the efficacy of the AEDs. Piezoelectric and electromagnetic micropumps have been explored for the use of a drug delivery unit, as they provide accurate drug flow and reduce power consumption. The reduction in power consumption as a result of minimal circuitry employed by the drug delivery system is making it suitable for practical biomedical applications. …
Date: May 2020
Creator: Sayeed, Md Abu
System: The UNT Digital Library

Evaluating Stack Overflow Usability Posts in Conjunction with Usability Heuristics

This thesis explores the critical role of usability in software development and uses usability heuristics as a cost-effective and efficient method for evaluating various software functions and interfaces. With the proliferation of software development in the modern digital age, developing user-friendly interfaces that meet the needs and preferences of users has become a complex process. Usability heuristics, a set of guidelines based on principles of human-computer interaction, provide a starting point for designers to create intuitive, efficient, and easy-to-use interfaces that provide a seamless user experience. The study uses Jakob Nieson's ten usability heuristics to evaluate the usability of Stack Overflow posts, a popular Q\&A website for developers. Through the analysis of 894 posts related to usability, the study identifies common usability problems faced by users and developers, providing valuable insights into the effectiveness of usability guidelines in software development practice. The research findings emphasize the need for ongoing evaluation and improvement of software interfaces to ensure a seamless user experience. The thesis concludes by highlighting the potential of usability heuristics in guiding the design of user-friendly software interfaces and improving the overall user experience in software development.
Date: May 2023
Creator: Jalali, Hamed
System: The UNT Digital Library
An Extensible Computing Architecture Design for Connected Autonomous Vehicle System (open access)

An Extensible Computing Architecture Design for Connected Autonomous Vehicle System

Autonomous vehicles have made milestone strides within the past decade. Advances up the autonomy ladder have come lock-step with the advances in machine learning, namely deep-learning algorithms and huge, open training sets. And while advances in CPUs have slowed, GPUs have edged into the previous decade's TOP 500 supercomputer territory. This new class of GPUs include novel deep-learning hardware that has essentially side-stepped Moore's law, outpacing the doubling observation by a factor of ten. While GPUs have make record progress, networks do not follow Moore's law and are restricted by several bottlenecks, from protocol-based latency lower bounds to the very laws of physics. In a way, the bottlenecks that plague modern networks gave rise to Edge computing, a key component of the Connected Autonomous Vehicle system, as the need for low-latency in some domains eclipsed the need for massive processing farms. The Connected Autonomous Vehicle ecosystem is one of the most complicated environments in all of computing. Not only is the hardware scaled all the way from 16 and 32-bit microcontrollers, to multi-CPU Edge nodes, and multi-GPU Cloud servers, but the networking also encompasses the gamut of modern communication transports. I propose a framework for negotiating, encapsulating and transferring data …
Date: May 2021
Creator: Hochstetler, Jacob Daniel
System: The UNT Digital Library

Extracting Dimensions of Interpersonal Interactions and Relationships

People interact with each other through natural language to express feelings, thoughts, intentions, instructions etc. These interactions as a result form relationships. Besides names of relationships like siblings, spouse, friends etc., a number of dimensions (e.g. cooperative vs. competitive, temporary vs. enduring, equal vs. hierarchical etc.) can also be used to capture the underlying properties of interpersonal interactions and relationships. More fine-grained descriptors (e.g. angry, rude, nice, supportive etc.) can also be used to indicate the reasons or social-acts behind the dimension cooperative vs. competitive. The way people interact with others may also tell us about their personal traits, which in turn may be indicative of their probable success in their future. The works presented in the dissertation involve creating corpora with fine-grained descriptors of interactions and relationships. We also described experiments and their results that indicated that the processes of identifying the dimensions can be automated.
Date: August 2020
Creator: Rashid, Farzana
System: The UNT Digital Library
Extracting Possessions and Their Attributes (open access)

Extracting Possessions and Their Attributes

Possession is an asymmetric semantic relation between two entities, where one entity (the possessee) belongs to the other entity (the possessor). Automatically extracting possessions are useful in identifying skills, recommender systems and in natural language understanding. Possessions can be found in different communication modalities including text, images, videos, and audios. In this dissertation, I elaborate on the techniques I used to extract possessions. I begin with extracting possessions at the sentence level including the type and temporal anchors. Then, I extract the duration of possession and co-possessions (if multiple possessors possess the same entity). Next, I extract possessions from an entire Wikipedia article capturing the change of possessors over time. I extract possessions from social media including both text and images. Finally, I also present dense annotations generating possession timelines. I present separate datasets, detailed corpus analysis, and machine learning models for each task described above.
Date: May 2020
Creator: Chinnappa, Dhivya Infant
System: The UNT Digital Library

Frameworks for Attribute-Based Access Control (ABAC) Policy Engineering

In this disseration we propose semi-automated top-down policy engineering approaches for attribute-based access control (ABAC) development. Further, we propose a hybrid ABAC policy engineering approach to combine the benefits and address the shortcomings of both top-down and bottom-up approaches. In particular, we propose three frameworks: (i) ABAC attributes extraction, (ii) ABAC constraints extraction, and (iii) hybrid ABAC policy engineering. Attributes extraction framework comprises of five modules that operate together to extract attributes values from natural language access control policies (NLACPs); map the extracted values to attribute keys; and assign each key-value pair to an appropriate entity. For ABAC constraints extraction framework, we design a two-phase process to extract ABAC constraints from NLACPs. The process begins with the identification phase which focuses on identifying the right boundary of constraint expressions. Next is the normalization phase, that aims at extracting the actual elements that pose a constraint. On the other hand, our hybrid ABAC policy engineering framework consists of 5 modules. This framework combines top-down and bottom-up policy engineering techniques to overcome the shortcomings of both approaches and to generate policies that are more intuitive and relevant to actual organization policies. With this, we believe that our work takes essential steps towards …
Date: August 2020
Creator: Alohaly, Manar
System: The UNT Digital Library
FruitPAL: An IoT-Enabled Framework for Automatic Monitoring of Fruit Consumption in Smart Healthcare (open access)

FruitPAL: An IoT-Enabled Framework for Automatic Monitoring of Fruit Consumption in Smart Healthcare

This research proposes FruitPAL and FruitPAL 2.0. They are full automatic devices that can detect fruit consumption to reduce the risk of disease. Allergies to fruits can seriously impair the immune system. A novel device (FruitPAL) detecting fruit that can cause allergies is proposed in this thesis. The device can detect fifteen types of fruit and alert the caregiver when an allergic reaction may have happened. The YOLOv8 model is employed to enhance accuracy and response time in detecting dangers. The notification will be transmitted to the mobile device through the cloud, as it is a commonly utilized medium. The proposed device can detect the fruit with an overall precision of 86%. FruitPAL 2.0 is envisioned as a device that encourages people to consume fruit. Fruits contain a variety of essential nutrients that contribute to the general health of the human body. FruitPAL 2.0 is capable of analyzing the consumed fruit and then determining its nutritional value. FruitPAL 2.0 has been trained on YOLOv5 V6.0. FruitPAL 2.0 has an overall precision of 90% in detecting the fruit. The purpose of this study is to encourage fruit consumption unless it causes illness. Even though fruit plays an important role in people's …
Date: December 2023
Creator: Alkinani, Abdulrahman Ibrahim M.
System: The UNT Digital Library

Helping Students with Upper Limb Motor Impairments Program in a Block-Based Programming Environment Using Voice

Students with upper body motor impairments, such as cerebral palsy, multiple sclerosis, ALS, etc., face challenges when learning to program in block-based programming environments, because these environments are highly dependent on the physical manipulation of a mouse or keyboard to drag and drop elements on the screen. In my dissertation, I make the block-based programming environment Blockly, accessible to students with upper body motor impairment by adding speech as an alternative form of input. This voice-enabled version of Blockly will reduce the need for the use of a mouse or keyboard, making it more accessible to students with upper body motor impairments. The voice-enabled Blockly system consists of the original Blockly application, a speech recognition API, predefined voice commands, and a custom function. Three user studies have been conducted, a preliminary study, a usability study, and an A/B test. These studies revealed a lot of information, such as the need for simpler, shorter, and more intuitive commands, the need to change the target audience, the shortcomings of speech recognition systems, etc. The feedback received from each study influenced design decisions at different phases. The findings also gave me insight into the direction I would like to go in the future. …
Date: August 2022
Creator: Okafor, Obianuju Chinonye
System: The UNT Digital Library
Hybrid Optimization Models for Depot Location-Allocation and Real-Time Routing of Emergency Deliveries (open access)

Hybrid Optimization Models for Depot Location-Allocation and Real-Time Routing of Emergency Deliveries

Prompt and efficient intervention is vital in reducing casualty figures during epidemic outbreaks, disasters, sudden civil strife or terrorism attacks. This can only be achieved if there is a fit-for-purpose and location-specific emergency response plan in place, incorporating geographical, time and vehicular capacity constraints. In this research, a comprehensive emergency response model for situations of uncertainties (in locations' demand and available resources), typically obtainable in low-resource countries, is designed. It involves the development of algorithms for optimizing pre-and post-disaster activities. The studies result in the development of four models: (1) an adaptation of a machine learning clustering algorithm, for pre-positioning depots and emergency operation centers, which optimizes the placement of these depots, such that the largest geographical location is covered, and the maximum number of individuals reached, with minimal facility cost; (2) an optimization algorithm for routing relief distribution, using heterogenous fleets of vehicle, with considerations for uncertainties in humanitarian supplies; (3) a genetic algorithm-based route improvement model; and (4) a model for integrating possible new locations into the routing network, in real-time, using emergency severity ranking, with a high priority on the most-vulnerable population. The clustering approach to solving dept location-allocation problem produces a better time complexity, and the …
Date: May 2021
Creator: Akwafuo, Sampson E
System: The UNT Digital Library