Development of a Laponite Pluronic Composite for Foaming Applications (open access)

Development of a Laponite Pluronic Composite for Foaming Applications

The focus of the following research was to provide an optimized particle stabilized foam of Laponite and Pluronic L62 in water by understanding (1) the Laponite-Pluronic interactions and properties for improved performance in a particle stabilized foam and (2) the interfacial properties between air and the Laponite-Pluronic complex. These studies were conducted using both bulk and interfacial rheology, XRD, sessile droplet, TGA and UV-vis. Two novel and simple techniques, lamella break point and capillary breakup extensional rheometry, were used to both understand the Laponite Pluronic L62 interaction and determine a different mechanism for foaming properties. Bulk rheological properties identified an optimal Laponite concentration of 2% with Pluronic L62 ranging from 2.5% and 6.5%, due to the ease of flow for the dispersion. The Pluronic L62 was observed to enhance the Laponite bulk rheological properties in solution. Additionally TGA showed a similar trend in thermal resistance to water with both addition of Laponite and Pluronic L62. XRD demonstrated that 0.25% Pluronic intercalated into Laponite from dried 2% Laponite films. XRD demonstrated that the Laponite matrix was saturated at 1% Pluronic L62. UV-vis demonstrated that a monolayer of Pluronic L62 is observed up to 0.65% Pluronic L62 onto Laponite. Interfacial rheology showed …
Date: December 2012
Creator: Davis, James William
System: The UNT Digital Library
Design, Synthesis and Screening of Homoleptic and Heteroleptic Platinum(ii) Pyridylazolate Complexes for N-type Semiconducting and Light-emitting Devices (open access)

Design, Synthesis and Screening of Homoleptic and Heteroleptic Platinum(ii) Pyridylazolate Complexes for N-type Semiconducting and Light-emitting Devices

A series of heteroleptic and homoleptic platinum(II) complexes has been synthesized and characterized towards their use in thin film devices such as organic light-emitting diodes (OLEDs) and organic thin film transistors (OTFTs). Pyridylpyrazolate- and pyridyltetrazolate-containing ligands were selected due to their structural rigidity and ease of functionalization. Single-crystal x-ray diffraction studies of two selected heteroleptic complexes show strong aggregation with preferential stacking into vertical columns with a varying degree of overlap of the neighboring square planar molecular units. It is shown that the close proximity of the molecules to one another in the stack increases semiconducting character, phosphorescence quantum yields, and shorter radiative lifetimes. The potential for these materials towards incorporation into high-efficiency doping free white OLEDs (DFW-OLEDs) for solid-state lighting and display applications has been realized and will be expanded upon by present and future embodiments of materials in this thesis.
Date: August 2012
Creator: Oswald, Iain William Herbert
System: The UNT Digital Library
Electrochemical Depostion of Bismuth on Ruthenium and Ruthenium Oxide Surfaces (open access)

Electrochemical Depostion of Bismuth on Ruthenium and Ruthenium Oxide Surfaces

Cyclic voltammetry experiments were performed to compare the electrodeposition characteristics of bismuth on ruthenium. Two types of electrodes were used for comparison: a Ru shot electrode (polycrystalline) and a thin film of radio-frequency sputtered Ru on a Ti/Si(100) support. Experiments were performed in 1mM Bi(NO3)3/0.5M H2SO4 with switching potentials between -0.25 and 0.55V (vs. KCl sat. Ag/AgCl) and a 20mV/s scan rate. Grazing incidence x-ray diffraction (GIXRD) determined the freshly prepared thin film electrode was hexagonally close-packed. After thermally oxidizing at 600°C for 20 minutes, the thin film adopts the tetragonal structure consistent with RuO2. a hydrated oxide film (RuOx?(H2O)y) was made by holding 1.3V on the surface of the film in H2SO4 for 60 seconds and was determined to be amorphous. Underpotential deposition of Bi was observed on the metallic surfaces and the electrochemically oxidized surface; it was not observed on the thermal oxide.
Date: May 2012
Creator: Taylor, Daniel M.
System: The UNT Digital Library
Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model (open access)

Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict …
Date: May 2012
Creator: Wang, Zhouxing
System: The UNT Digital Library
Knowledge Discovery of Nanotube Mechanical Properties With an Informatics-Molecular Dynamics Approach (open access)

Knowledge Discovery of Nanotube Mechanical Properties With an Informatics-Molecular Dynamics Approach

Carbon nanotubes (CNT) have unparalleled mechanical properties, spanning several orders of magnitude over both length and time scales. Computational and experimental results vary greatly, partly due to the multitude of variables. Coupling physics-based molecular dynamics (MD) with informatics methodologies is proposed to navigate the large problem space. The adaptive intermolecular reactive empirical bond order (AIREBO) is used to model short range, long range and torsional interactions. A powerful approach that has not been used to study CNT mechanical properties is the derivation of descriptors and quantitative structure property relationships (QSPRs). For the study of defected single-walled CNTs (SWCNT), two descriptors were identified as critical: the density of non-sp2 hybridized carbons and the density of methyl groups functionalizing the surface. It is believed that both of these descriptors can be experimentally measured, paving the way for closed-loop computational-experimental development. Informatics can facilitate discovery of hidden knowledge. Further evaluation of the critical descriptors selected for Poisson’s ratio lead to the discovery that Poisson’s ratio has strain-varying nonlinear elastic behavior. CNT effectiveness in composites is based both on intrinsic mechanical properties and interfacial load transfer. In double-walled CNTs, inter-wall bonds are surface defects that decrease the intrinsic properties but also improve load transfer. …
Date: May 2012
Creator: Borders, Tammie L.
System: The UNT Digital Library
Incorporating Electrochemistry and X-ray Diffraction Experiments Into an Undergraduate Instrumental Analysis Course (open access)

Incorporating Electrochemistry and X-ray Diffraction Experiments Into an Undergraduate Instrumental Analysis Course

Experiments were designed for an undergraduate instrumental analysis laboratory course, two in X-ray diffraction and two in electrochemistry. Those techniques were chosen due their underrepresentation in the Journal of Chemical Education. Paint samples (experiment 1) and pennies (experiment 2) were characterized using x-ray diffraction to teach students how to identify different metals and compounds in a sample. in the third experiment, copper from a penny was used to perform stripping analyses at different deposition times. As the deposition time increases, the current of the stripping peak also increases. the area under the stripping peak gives the number of coulombs passed, which allows students to calculate the mass of copper deposited on the electrode surface. the fourth experiment was on the effects of variable scan rates on a chemical system. This type of experiment gives valuable mechanistic information about the chemical system being studied.
Date: May 2012
Creator: Molina, Cathy
System: The UNT Digital Library
Study of Novel Ion/surface Interactions Using Soft-landing Ion Mobility (open access)

Study of Novel Ion/surface Interactions Using Soft-landing Ion Mobility

Preparative mass spectrometry is a gas-phase ion deposition technique aimed at deposition of monodisperse ion beams on a surface. This is accomplished through the implementation of a soft-landing ion mobility system which allows for high ion flux of conformationally selected ion packets. The soft-landing ion mobility system has been applied to a number of unique chemical problems including the deposition of insulators on graphene, the preparation of reusable surface enhanced Raman spectroscopic substrates, and the deposition of uranium nanoparticles. Soft-landing ion mobility provided a platform for the quick deposition of usable amounts of materials, which is the major objective of preparative mass spectrometry. Soft-landing ion mobility is unique when compared to other preparative mass spectrometric techniques in that the ion packets are conformationally separated, not separated on mass to charge ratio. This provides orthogonal complementary data to traditional mass spectrometric techniques and allows for the study of conformationally monodisperse surfaces. The diversity of problems that have been and continued to be explored with soft-landing ion mobility highlight the utility of the technique as a novel tool for the study of multiple ion/surface interactions.
Date: December 2012
Creator: Hoffmann, William Darryle
System: The UNT Digital Library
Thermochemistry Investigations Via the Correlation Consistent Composite Approach (open access)

Thermochemistry Investigations Via the Correlation Consistent Composite Approach

Since the development of the correlation consistent composite approach (ccCA) in 2006, ccCA has been shown to be applicable across the periodic table, producing, on average, energetic properties (e.g., ionization potentials, electron affinities, enthalpies of formation, bond dissociation energies) within 1 kcal/mol for main group compounds. This dissertation utilizes ccCA in the investigation of several chemical systems including nitrogen-containing compounds, sulfur-containing compounds, and carbon dioxide complexes. The prediction and calculation of energetic properties (e.g., enthalpies of formation and interaction energies) of the chemical systems investigated within this dissertation has led to suggestions of novel insensitive highly energetic nitrogen-containing compounds, defined reaction mechanisms for sulfur compounds allowing for increased accuracy compared to experimental enthalpies of formation, and a quantitative structure activity relationship for altering the affinity of CO2 with substituted amine compounds. Additionally, a study is presented on the convergence of correlation energy and optimal domain criteria for local Møller–Plesset theory (LMP2).
Date: December 2012
Creator: Jorgensen, Kameron R.
System: The UNT Digital Library
Water-soluble Phosphors for Hypoxia Detection in Chemical and Biological Media (open access)

Water-soluble Phosphors for Hypoxia Detection in Chemical and Biological Media

Water-soluble Pt(II) phosphors exist predominantly for photophysical studies. However, fewer are known to be candidates for cisplatin derivatives. If such a molecule could exist, it would be efficient at not only destroying the cancerous cells which harm the body, but the destruction would also be traceable within the human body as it occurred. Herein, research accomplished in chemistry describes the photophysical properties of a water-soluble phosphor. Spectroscopically, this phosphor is unique in that it possesses a strong green emission at room temperature in aqueous media. Its emission is also sensitive to the gaseous environment. These properties have been expanded to both analytical and biological applications. Studies showing the potential use of the phosphor as a heavy metal remover from aqueous solutions have been accomplished. The removal of toxic heavy metals was indicated by the loss of emission as well as the appearance of a precipitate. The gaseous sensitivity was elicited to be used as a potential cancerous cell biomarker. In vivo studies were accomplished in a wide variety of species, including bacteria (E. coli), worms (C. elegans), small crustaceans (Artemia), and fish (D. rerio and S. ocellatus). The phosphor in question is detectable in all of the above. This fundamental …
Date: December 2012
Creator: Satumtira, Nisa Tara
System: The UNT Digital Library
Rational Design of Metal-organic Electronic Devices: a Computational Perspective (open access)

Rational Design of Metal-organic Electronic Devices: a Computational Perspective

Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-?, and ?-? interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d10 cyclo-[M(?-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the …
Date: December 2012
Creator: Chilukuri, Bhaskar
System: The UNT Digital Library
Investigation of Novel Electrochemical Synthesis of Bioapatites and Use in Elemental Bone Analysis (open access)

Investigation of Novel Electrochemical Synthesis of Bioapatites and Use in Elemental Bone Analysis

In this research, electrochemical methods are used to synthesize the inorganic fraction of bone, hydroxyapatite, for application in biological implants and as a calibration material for elemental analysis in human bone. Optimal conditions of electrochemically deposited uniform apatite coatings on stainless steel were investigated. Apatite is a ceramic with many different phases and compositions that have beneficial characteristics for biomedical applications. Of those phases hydroxyapatite (HA) is the most biocompatible and is the primary constituent of the inorganic material in bones. HA coatings on metals and metal alloys have the ability to bridge the growth between human tissues and implant interface, where the metal provides the strength and HA provides the needed bioactivity. The calcium apatites were electrochemically deposited using a modified simulated body fluid adjusted to pH 4-10, for 1-3 hours at varying temperature of 25-65°C while maintaining cathodic potentials of -1.0 to -1.5V. It was observed that the composition and morphology of HA coatings change during deposition by the concentration of counter ions in solution, pH, temperature, applied potential, and post-sintering. The coatings were characterized by powder x-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The precipitated powders from the experiment were also characterized, with results …
Date: December 2012
Creator: DeLeon, Vallerie H.
System: The UNT Digital Library
Group 10 Catalyzed Olefin Hydroarylation (open access)

Group 10 Catalyzed Olefin Hydroarylation

Alkyl-arenes are important industry feedstock chemicals that are used as solvents, pharmaceutical precursors, and polymer monomer units. One alkyl-arene, ethylbenzene, is the main focus of this dissertation, and is produced in the million ton a year scale. As alkyl-arenes are important commodity chemicals, catalytic olefin hydroarylation is a lucrative alternative for their production rather than Friedel-Crafts alkylation or various coupling reactions that have lower atom economy, require strong acids, or are energetically demanding. Currently catalytic olefin hydroarylation still suffers from decomposition pathways of the active catalytic complexes, side reactions that lead to waste products, and unfavorable activation barriers, which represent high temperature and pressure. Modifications to the catalytically active system bipyridine platinum(II) (bpyPtII), through computational methods, are explored herein. The work presented here investigates catalytic olefin hydroarylation in order to mitigate the aforementioned difficulties. Included in this study are changes to the electronic profile of the supporting ligand, bpy, through the addition of electron withdrawing or electron donating R groups (methoxy, nitro), definite ligand replacements such as bpy to hydridotris(pyrazolyl)borate (Tp), changes in metal oxidation (II to IV), and replacing the metal center from Pt to Ni. Nickel was selected as a possible alternative to platinum as it is more …
Date: December 2012
Creator: Gonzalez, Hector Emanuel
System: The UNT Digital Library
Impact of Texas High School Science Teacher Credentials on Student Performance in High School Science (open access)

Impact of Texas High School Science Teacher Credentials on Student Performance in High School Science

A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.
Date: August 2012
Creator: George, Anna Ray Bayless
System: The UNT Digital Library
Characterization of Ionic Liquid As a Charge Carrier for the Detection of Neutral Organometallic Complexes Using Electrospray Ionization Mass Spectrometry (open access)

Characterization of Ionic Liquid As a Charge Carrier for the Detection of Neutral Organometallic Complexes Using Electrospray Ionization Mass Spectrometry

A novel application of ionic liquid as a charge carrier for the analysis and detection of neutral organometallic complexes using a mass spectrometer has been presented. The mass spectrometer detects only charged compounds which raise a difficulty in analyzing a neutral molecule that lacks a basic site to associate with charge. Therefore, an effective way of providing charge has always been an area of keen interest in the field of mass spectrometry. Ionic liquids have a very fascinating property of forming a cation-? interaction with other molecules to give a charged complex. In order to take advantage of this, it is important to know the geometric structure of the complex. Advanced methodologies like hydrogen-deuterium exchange and computational calculations have been used assisting in better understanding of the structure of the ionic liquid complexes.
Date: August 2012
Creator: Joshi, Ubisha
System: The UNT Digital Library
Supramolecular Solar Cells (open access)

Supramolecular Solar Cells

Supramolecular chemistry - chemistry of non-covalent bonds including different type of intermolecular interactions viz., ion-pairing, ion-dipole, dipole-dipole, hydrogen bonding, cation-p and Van der Waals forces. Applications based on supramolecular concepts for developing catalysts, molecular wires, rectifiers, photochemical sensors have been evolved during recent years. Mimicking natural photosynthesis to build energy harvesting devices has become important for generating energy and solar fuels that could be stored for future use. In this dissertation, supramolecular chemistry is being explored for creating light energy harvesting devices. Photosensitization of semiconductor metal oxide nanoparticles, such as titanium dioxide (TiO2) and tin oxide (SnO2,), via host-guest binding approach has been explored. In the first part, self-assembly of different porphyrin macrocyclic compounds on TiO2 layer using axial coordination approach is explored. Supramolecular dye sensitized solar cells built based on this approach exhibited Incident Photon Conversion Efficiency (IPCE) of 36% for a porphyrin-ferrocene dyad. In the second part, surface modification of SnO2 with water soluble porphyrins and phthalocyanine resulted in successful self-assembly of dimers on SnO2 surface. IPCE more than 50% from 400 - 700 nm is achieved for the supramolecular self-assembled heterodimer photocells is achieved. In summary, the axial ligation and ion-pairing method used as supramolecular tools to …
Date: August 2012
Creator: Subbaiyan, Navaneetha Krishnan
System: The UNT Digital Library