Degree Discipline

Computational Modeling of Small Molecules (open access)

Computational Modeling of Small Molecules

Computational chemistry lies at the intersection of chemistry, physics, mathematics, and computer science, and can be used to explain the behavior of atoms and molecules, as well as to augment experiment. In this work, computational chemistry methods are used to predict structural and energetic properties of small molecules, i.e. molecules with less than 60 atoms. Different aspects of computational chemistry are examined in this work. The importance of examining the converged orbitals obtained in an electronic structure calculation is explained. The ability to more completely describe the orbital space through the extrapolation of energies obtained at increasing quality of basis set is investigated with the use of the Sapporo-nZP-2012 family of basis set. The correlation consistent Composite Approach (ccCA) is utilized to compute the enthalpies of formation of a set of molecules and the accuracy is compared with the target method, CCSD(T,FC1)/aug-cc-pCV∞Z-DK. Both methodologies are able to produce computed enthalpies of formation that are typically within 1 kcal mol-1 of reliable experiment. This demonstrates that ccCA can be used instead of much more computationally intensive methods (in terms of memory, processors, and time required for a calculation) with the expectation of similar accuracy yet at a reduced computational cost. The …
Date: December 2015
Creator: Weber, Rebecca J.
System: The UNT Digital Library
The Impact of Computational Methods on Transition Metal-containing Species (open access)

The Impact of Computational Methods on Transition Metal-containing Species

Quantum chemistry methodologies can be used to address a wide variety of chemical problems. Key to the success of quantum chemistry methodologies, however, is the selection of suitable methodologies for specific problems of interest, which often requires significant assessment. To gauge a number of methodologies, the utility of density functionals (BLYP, B97D, TPSS, M06L, PBE0, B3LYP, M06, and TPSSh) in predicting reaction energetics was examined for model studies of C-O bond activation of methoxyethane and methanol. These species provide excellent representative examples of lignin degradation via C-O bond cleavage. PBE0, which performed better than other considered DFT functionals, was used to investigate late 3d (Fe, Co, and Ni), 4d (Ru, Rh, and Pd), and 5d (Re, Os, and Ir) transition metal atom mediated Cβ -O bond activation of the β–O–4 linkage of lignin. Additionally, the impact of the choice of DFT functionals, basis sets, implicit solvation models, and layered quantum chemical methods (i.e., ONIOM, Our Own N-layered Integrated molecular Orbital and molecular Mechanics) was investigated for the prediction of pKa for a set of Ni-group metal hydrides (M = Ni, Pd, and Pt) in acetonitrile. These investigations have provided insight about the utility of a number of theoretical methods in …
Date: December 2015
Creator: Wang, Jiaqi
System: The UNT Digital Library
Accurate Energetics Across the Periodic Table Via Quantum Chemistry (open access)

Accurate Energetics Across the Periodic Table Via Quantum Chemistry

Greater understanding and accurate predictions of structural, thermochemical, and spectroscopic properties of chemical compounds is critical for the advancements of not only basic science, but also in applications needed for the growth and health of the U.S. economy. This dissertation includes new ab initio composite approaches to predict accurate energetics of lanthanide-containing compounds including relativistic effects, and optimization of parameters for semi-empirical methods for transition metals. Studies of properties and energetics of chemical compounds through various computational methods are also the focus of this research, including the C-O bond cleavage of dimethyl ether by transition metal ions, the study of thermochemical and structural properties of small silicon containing compounds with the Multi-Reference correlation consistent Composite Approach, the development of a composite method for heavy element systems, spectroscopic of compounds containing noble gases and metals (ArxZn and ArxAg+ where x = 1, 2), and the effects due to Basis Set Superposition Error (BSSE) on these van der Waals complexes.
Date: December 2015
Creator: Peterson, Charles Campbell
System: The UNT Digital Library
Chirped-Pulse Fourier Transform Microwave Spectroscopy of Fluoroiodoacetonitrile and Chloropentafluoroacetone (open access)

Chirped-Pulse Fourier Transform Microwave Spectroscopy of Fluoroiodoacetonitrile and Chloropentafluoroacetone

This work focuses on finding the complete iodine and nitrogen nuclear electric quadrupole coupling tensors for fluoroiodoacetonitrile using chirped-pulse Fourier transform microwave spectroscopy. Fluoroiodoacetonitrile contains two hyperfine nuclei, iodine (I=5/2) and nitrogen (I=1) and the spectra were observed with great resolution. A total of 499 transitions were observed for this molecule. The a, b and c rotational constants were obtained. A study of chloropentafluoroacetone was also done using chirped-pulse Fourier transform microwave spectroscopy. The two chlorine isotopes for this molecule, Cl-35 and Cl-37 were observed and 326 and 170 transitions were recorded, respectively.
Date: December 2010
Creator: Kadiwar, Gautam
System: The UNT Digital Library
The Multi-reference Correlation Consistent Composite Approach: A New Vista In Quantitative Prediction Of Thermochemical And Spectroscopic Properties (open access)

The Multi-reference Correlation Consistent Composite Approach: A New Vista In Quantitative Prediction Of Thermochemical And Spectroscopic Properties

The multi-reference correlation consistent composite approach (MR-ccCA) was designed to reproduce the accuracy of more computationally intensive ab initio quantum mechanical methods like MR-ACPF-DK/aug-cc-pCV?Z-DK, albeit at a significantly reduced cost. In this dissertation, the development and applications of the MR-ccCA method and a variant of its single reference equivalent (the relativistic pseudopotential ccCA method) are reported. MR-ccCA is shown to predict the energetic properties of reactive intermediates, excited states species and transition states to within chemical accuracy (i.e. ±1.0 kcal mol 1) of reliable experimental values. The accuracy and versatility of MR-ccCA are also demonstrated in the prediction of the thermochemical and spectroscopic properties (such as atomization energies, enthalpies of formation and adiabatic transition energies of spin-forbidden excited states) of a series of silicon-containing compounds. The thermodynamic and kinetic feasibilities of the oxidative addition of an archetypal arylglycerol ?-aryl ether (?-O-4 linkage) substructure of lignin to Ni, Cu, Pd and Pt transition metal atoms using the efficient relativistic pseudopotential correlation consistent composite approach within an ONIOM framework (rp-ccCA-ONIOM), a multi-level multi-layer QM/QM method formulated to enhance the quantitative predictions of the chemical properties of heavy element-containing systems larger than hitherto attainable, are also reported.
Date: December 2011
Creator: Oyedepo, Gbenga A.
System: The UNT Digital Library
Thermochemistry Investigations Via the Correlation Consistent Composite Approach (open access)

Thermochemistry Investigations Via the Correlation Consistent Composite Approach

Since the development of the correlation consistent composite approach (ccCA) in 2006, ccCA has been shown to be applicable across the periodic table, producing, on average, energetic properties (e.g., ionization potentials, electron affinities, enthalpies of formation, bond dissociation energies) within 1 kcal/mol for main group compounds. This dissertation utilizes ccCA in the investigation of several chemical systems including nitrogen-containing compounds, sulfur-containing compounds, and carbon dioxide complexes. The prediction and calculation of energetic properties (e.g., enthalpies of formation and interaction energies) of the chemical systems investigated within this dissertation has led to suggestions of novel insensitive highly energetic nitrogen-containing compounds, defined reaction mechanisms for sulfur compounds allowing for increased accuracy compared to experimental enthalpies of formation, and a quantitative structure activity relationship for altering the affinity of CO2 with substituted amine compounds. Additionally, a study is presented on the convergence of correlation energy and optimal domain criteria for local Møller–Plesset theory (LMP2).
Date: December 2012
Creator: Jorgensen, Kameron R.
System: The UNT Digital Library
Kinetic Investigation of Atomic Hydrogen with Sulfur-Containing Species (open access)

Kinetic Investigation of Atomic Hydrogen with Sulfur-Containing Species

The reactions of atomic hydrogen with methanethiol and that of atomic hydrogen with carbon disulfide were studied experimentally using flash-photolysis resonance-fluorescence techniques. Rate constants were determined over a range of temperatures and pressures, and through analysis and comparison to theoretical work details of the reactions were ascertained.
Date: December 2014
Creator: Kerr, Katherine Elaine
System: The UNT Digital Library