Exploration of Genome Length, Burst Time, and Burst Size of  Streptomyces griseus Bacteriophages (open access)

Exploration of Genome Length, Burst Time, and Burst Size of Streptomyces griseus Bacteriophages

Since phages use the host resources to replicate themselves after infection, the different sizes of the phage genome should influence the replication rate. We, therefore, hypothesized that the smaller genomes should burst the cell faster than the larger ones. As well, the shorter genomes would have greater burst sizes because they should replicate faster. Here, we obtained 16 phages of various genome length. All phages were isolated on Streptomyces griseus and available in our phage bank at the University of North Texas. We performed one-step growth studies for the 16 phages, as well as determined the host doubling time from its growth curve. The results show that S. griseus grown in nutrient broth has a doubling time of 5 hours and 22 minutes. This doubling time is used as a guideline for the phage growth studies. Because the filamentous nature of the host caused several difficulties during the experiment, we isolated single cells by sonication and centrifugation. After the cell number was determined by viable cell count, the cells were infected with each type of phage using a multiplicity of infection (MOI) of 0.5. The results show that phages' burst times range between 45 (±0, standard error) and 420 (±30) …
Date: May 2019
Creator: Maneekul, Jindanuch
System: The UNT Digital Library

Defining Components Linked to Bacterial Nutritional Utilization of Cyanide as a Sole Nitrogen Source

Access: Use of this item is restricted to the UNT Community
One of the challenges in biology is placing a function on the myriad of gene sequences having become available from rapid advances in genome sequencing. One such example is a gene cluster (Nit1C) found in bacteria that is tied to the unusual ability of certain bacteria to grow when supplied cyanide as the sole nitrogen source. The term cyanotrophs has been applied to such bacteria, for which a genetic linkage between cyanotrophy and Nit1C was demonstrated for 10 separate bacteria. In addition to growth, cyanide induced the expression of Nit1C genes in all organisms tested, and in one case, deletion of one of the Nit1C genes (nitC) caused a loss of growth. Of the ten bacteria able to grow cyanotrophically, all gave evidence of harboring Nit1C on their genome except for two (Pseudomonas fluorescens Pf11764 and P. monteilii BCN3), which were sequenced and the presence of Nit1C was also confirmed. A broader search of bacteria identified 270 separate strains with the cluster, all limited to bacteria spanning the phyla Firmicutes, Actinobacteria, Proteobacteria and Cyanobacteria. Remarkably, many examples of a single representative of a given taxon contained Nit1C, most poignantly displayed by Pf11764 and PmBCN3; the interpretation being the cluster was …
Date: May 2019
Creator: Jones, Lauren Brittany
System: The UNT Digital Library
Comparison and Genetic Analysis of Host Specificity in Cluster BD1 Bacteriophages infecting Streptomyces (open access)

Comparison and Genetic Analysis of Host Specificity in Cluster BD1 Bacteriophages infecting Streptomyces

Bacteriophages are viruses that specifically infect bacteria. When a phage infects a bacterium, it attaches itself to the surface of the bacteria and injects its DNA into the intracellular space. The phage DNA hijacks the cellular machinery of the bacteria and forces it to produce phage proteins. Eventually, the bacteria cell bursts or lyses, releasing new phage. The bacteria act as a host for phage reproduction. The ability for a phage to infect multiple bacterial species is known as host range. In siphoviridae bacteriophages, host range is thought to primarily be determined by proteins at the tip of their tail fibers. These proteins act as anti-receptors to specific receptors on the surface of bacteria. In siphoviridae Gram-positive infecting phages, the genes that code these proteins are typically located between the tape measure protein gene and the endolysin gene. It is hypothesized that phages that have similar anti-receptor proteins will have similar host range. In this study, the host ranges of 12 BD1 bacteriophages were tested on 9 different Streptomyces species. In these 12 phages, the genes between the tape measure protein gene and endolysin gene were compared. The 12 phages had high levels of variability in these genes. Five genes …
Date: May 2019
Creator: Klug, Hannah
System: The UNT Digital Library