Interspecimen Study of Bone to Relate Macromechanical, Nanomechanical and Compositional Changes Across the Femoral Cortex of Bone (open access)

Interspecimen Study of Bone to Relate Macromechanical, Nanomechanical and Compositional Changes Across the Femoral Cortex of Bone

Mechanics of bone is widely studied and researched, mainly for the study of fracture. This has been done mostly on a macro scale. In this work hierarchical nature of bone has been explored to investigate bone mechanics in more detail. Flexural test were done to classify the bones according to their strength and deflection. Raman spectroscopy analysis was done to map the mineralization, collagen crosslinking changes across the thickness of the bone. Nanoindentation was done to map indentation hardness and indentation modulus across femoral cortex of the bone. The results indicate that the composition of the bone changes across the thickness of the femoral cortex. The hypothesis is confirmed as increase in mineralization, carbonate to phosphate ratio and collagen crosslinking shows the effect as increased indentation hardness and modulus and decreased deflection.
Date: May 2013
Creator: Nar, Mangesh
System: The UNT Digital Library

Substrate Nanotopography and Stiffness Modulation of Cell Behavior

Access: Use of this item is restricted to the UNT Community
The physical characteristics (i.e., nanostructure and stiffness) of the extracellular matrix where cells reside have been shown to profoundly affect numerous cellular events in vivo and also been employed to modulate cell behavior in vitro, yet how these physical cues regulate cell behavior is still elusive. Therefore, we engineered a variety of nanotopographies with different shapes and dimensions, and investigated how the nanotopographical cue, through focal adhesions-cytoskeleton-nucleus pathway, affected cell phenotype and function. We further designed and fabricated well-defined substrates which had either identical biochemical cue (adhesive ligand presentation) but different nanotopographical cues or identical nanotopography but different biochemical cues, and dissected the roles of these cues in cell modulation. In addition, we revealed that the human mesenchymal stem cells (hMSCs) could obtain nanotopographical memory from the past culture environment, and the nanotopographical memory influenced the future fate decision of the hMSCs. Moreover, we evaluated the effects of substrate nanotopographical and stiffness cues on the fibrogenesis of human lung fibroblasts in response to carbon nanotubes and highlighted the significance of these physical cues in the development of physiologically relevant in vitro models for nanotoxicological study. The mechanistic understanding of the physical regulation of cell behaviors will provide important insight into …
Date: May 2019
Creator: Wang, Kai
System: The UNT Digital Library
An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and  Ti-Sb (open access)

An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and Ti-Sb

The current study focuses on phase stability and evolution in the titanium-zinc titanium-copper and titanium-antimony systems. The study utilized the Laser Engineering Net Shaping (LENS™) processing technique to deposit compositionally graded samples of three binary system in order to allow the assessment of phase stability and evolution as a function of composition and temperature the material is subjected to. Through LENS™ processing it was possible to create graded samples from Ti-xSb (up to 13wt%) and Ti-xCu (up to 16wt%). The LENS™ deposited gradient were solutionized, and step quenched to specific aging temperature, and the resulting microstructures and phase were characterized utilizing XRD, EDS, SEM, FIB and TEM. The Ti-Zn system proved incapable of being LENS™ deposited due to the low vaporization temperature of Zn; however, a novel processing approach was developed to drip liquid Zn onto Ti powder at temperatures above β transus temperature of Ti (882 ◦C) and below the vaporization temperature of Zn (907 ◦C). The product of this processing technique was characterized in a similar way as the graded LENS™ depositions. From measurements performed on Ti-Sb it seems that Sb could be a potential α stabilizer in Ti due to the presence of a mostly homogeneous α …
Date: May 2015
Creator: Brice, David
System: The UNT Digital Library
First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials (open access)

First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

In this thesis, I utilize first principles density functional theory (DFT) based calculations to investigate the structure and electronic properties including charge transfer behaviors and work function of two types of materials: pentacene based organic semiconductors and ZnO transparent conducting oxides, with an aim to search for high mobility n-type organic semiconductors and fine tuning work functions of ZnO through surface modifications. Based on DFT calculations of numerous structure combinations, I proposed a pentacene and perfluoro-pentacene alternating hybrid structures as a new type of n-type semiconductor. Based on the DFT calculations and Marcus charge transfer theory analysis, the new structure has high charge mobility and can be a promising new n-type organic semiconductor material. DFT calculations have been used to systematically investigate the effect of surface organic absorbate and surface defects on the work function of ZnO. It was found that increasing surface coverage of organic groups and decreasing surface defects lead to decrease of work functions, in excellent agreement with experimental results. First principles based calculations thus can greatly contribute to the investigating and designing of new electronic materials.
Date: May 2012
Creator: Li, Yun
System: The UNT Digital Library