Degree Department

Month

UV Magnetic Plasmons in Cobalt Nanoparticles

Access: Use of this item is restricted to the UNT Community
The main goals of this research were to fabricate magnetic cobalt nanoparticles and study their structural, crystal structure, optical, and magnetic properties. Cobalt nanoparticles with average particle size 8.7 nm were fabricated by the method of high temperature reduction of cobalt salt utilizing trioctylphosphine as a surfactant, oleic acid as a stabilizer, and lithium triethylborohydride as a reducing reagent. Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the formation of cobalt nanoparticles. High resolution transmission electron microscopy images show that Co NPs form both HCP and FCC crystal structure. The blocking temperature of 7.6 nm Co NPs is 189 K. Above the blocking temperature, Co NPs are single domain and hence showed superparamagnetic behavior. Below the blocking temperature, Co NPs are ferromagnetic. Cobalt nanoparticles with a single-domain crystal structure support a sharp plasmon resonance at 280 nm. Iron nanoparticles with average particle size 4.8 nm were fabricated using chemical reduction method show plasmon resonance at 266 nm. Iron nanoparticles are ferromagnetic at 6 K and superparamagnetic at 300 K.
Date: May 2019
Creator: Bhatta, Hari Lal
System: The UNT Digital Library