Exploring Caffeyl-Lignin Biosynthesis in Cleome hassleriana and Polymerization of Caffeyl Alcohol in Arabidopsis thaliana (open access)

Exploring Caffeyl-Lignin Biosynthesis in Cleome hassleriana and Polymerization of Caffeyl Alcohol in Arabidopsis thaliana

C-lignin (caffeyl-lignin) is a novel linear lignin polymer found in the seed coats of several non-crop plants, notably Vanilla planifolia (Vanilla), Jatropha Curcas (Jatropha), and Cleome hassleriana (Cleome). C-lignin has several advantages over normal G/S-lignin, found in the majority of lignocellulosic biomass, for valorization in the context of bioprocessing: less cross-linking to cell wall polysaccharides (less recalcitrant biomass), ordered linkages between monomers (homogeneous polymer), and no branching points (linear polymer). These properties make C-lignin an attractive replacement for native lignin in lignocellulosic biomass crops. The seed coats of Cleome hassleriana (Cleome) synthesize G-lignin during early seed maturation, then switch to synthesis of C-lignin during late maturation. This switch to C-lignin in Cleome seed coats is accompanied by loss of caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) and caffeic acid 3-O-methyltransferase (COMT) activities, along with changes in transcript abundance of several lignin related genes. The focus of this research thesis is to understand the biochemical changes leading to C-lignin deposition in Cleome hassleriana seed coats, and to explore the ability of Arabidopsis thaliana seedlings to polymerize caffeyl alcohol to C-lignin. In this thesis, candidate transcripts were implicated in C-lignin biosynthesis by differential gene expression analysis of transcripts in seed coat tissues at 8-18 days after …
Date: December 2019
Creator: Harkleroad, Aaron Djuanell
System: The UNT Digital Library
Transient Expression of BABY BOOM, WUSCHEL, and SHOOT MERISTEMLESS from Virus-Based Vectors in Cotton Explants:  Can We Accelerate Somatic Embryogenesis to Improve Transformation Efficiency? (open access)

Transient Expression of BABY BOOM, WUSCHEL, and SHOOT MERISTEMLESS from Virus-Based Vectors in Cotton Explants: Can We Accelerate Somatic Embryogenesis to Improve Transformation Efficiency?

Upland cotton (Gossypium hirsutum L.) is the world's most prominent fiber crop. Cotton transformation is labor intensive and time consuming, taking 12 to 18 months for rooted T0 plants. One rate limiting step is the necessary production of somatic embryos. In other recalcitrant species, ectopic expression of three genes were shown to promote somatic embryogenesis: WUSCHEL (WUS), SHOOT MERISTEMLESS (STM), and BABY BOOM (BBM). WUS is responsible for maintaining stem-cell fate in shoot and floral meristems. STM is needed to establish and maintain shoot meristems. STM and WUS have similar functions but work in different pathways; overexpression of both together converts somatic cells to meristematic and embryogenic fate. BBM encodes an AP2/ERF transcription factor that is expressed during embryogenesis and ectopic expression of BBM reprograms vegetative tissues to embryonic growth. In prior studies, these genes were constitutively expressed, and cultures did not progress beyond embryogenesis because the embryogenic signal was not turned off. In our study, we set out to use these genes to increase the efficiency of cotton transformation and decrease the time it takes to regenerate a plant. A disarmed cotton leaf crumple virus (dCLCrV) vector delivers WUS, STM, or BBM into cotton tissue cultures through Agrobacterium tumefaciens …
Date: December 2019
Creator: Alejos, Marcos
System: The UNT Digital Library
Exploration of Genome Length, Burst Time, and Burst Size of  Streptomyces griseus Bacteriophages (open access)

Exploration of Genome Length, Burst Time, and Burst Size of Streptomyces griseus Bacteriophages

Since phages use the host resources to replicate themselves after infection, the different sizes of the phage genome should influence the replication rate. We, therefore, hypothesized that the smaller genomes should burst the cell faster than the larger ones. As well, the shorter genomes would have greater burst sizes because they should replicate faster. Here, we obtained 16 phages of various genome length. All phages were isolated on Streptomyces griseus and available in our phage bank at the University of North Texas. We performed one-step growth studies for the 16 phages, as well as determined the host doubling time from its growth curve. The results show that S. griseus grown in nutrient broth has a doubling time of 5 hours and 22 minutes. This doubling time is used as a guideline for the phage growth studies. Because the filamentous nature of the host caused several difficulties during the experiment, we isolated single cells by sonication and centrifugation. After the cell number was determined by viable cell count, the cells were infected with each type of phage using a multiplicity of infection (MOI) of 0.5. The results show that phages' burst times range between 45 (±0, standard error) and 420 (±30) …
Date: May 2019
Creator: Maneekul, Jindanuch
System: The UNT Digital Library

Defining Components Linked to Bacterial Nutritional Utilization of Cyanide as a Sole Nitrogen Source

Access: Use of this item is restricted to the UNT Community
One of the challenges in biology is placing a function on the myriad of gene sequences having become available from rapid advances in genome sequencing. One such example is a gene cluster (Nit1C) found in bacteria that is tied to the unusual ability of certain bacteria to grow when supplied cyanide as the sole nitrogen source. The term cyanotrophs has been applied to such bacteria, for which a genetic linkage between cyanotrophy and Nit1C was demonstrated for 10 separate bacteria. In addition to growth, cyanide induced the expression of Nit1C genes in all organisms tested, and in one case, deletion of one of the Nit1C genes (nitC) caused a loss of growth. Of the ten bacteria able to grow cyanotrophically, all gave evidence of harboring Nit1C on their genome except for two (Pseudomonas fluorescens Pf11764 and P. monteilii BCN3), which were sequenced and the presence of Nit1C was also confirmed. A broader search of bacteria identified 270 separate strains with the cluster, all limited to bacteria spanning the phyla Firmicutes, Actinobacteria, Proteobacteria and Cyanobacteria. Remarkably, many examples of a single representative of a given taxon contained Nit1C, most poignantly displayed by Pf11764 and PmBCN3; the interpretation being the cluster was …
Date: May 2019
Creator: Jones, Lauren Brittany
System: The UNT Digital Library
Comparison and Genetic Analysis of Host Specificity in Cluster BD1 Bacteriophages infecting Streptomyces (open access)

Comparison and Genetic Analysis of Host Specificity in Cluster BD1 Bacteriophages infecting Streptomyces

Bacteriophages are viruses that specifically infect bacteria. When a phage infects a bacterium, it attaches itself to the surface of the bacteria and injects its DNA into the intracellular space. The phage DNA hijacks the cellular machinery of the bacteria and forces it to produce phage proteins. Eventually, the bacteria cell bursts or lyses, releasing new phage. The bacteria act as a host for phage reproduction. The ability for a phage to infect multiple bacterial species is known as host range. In siphoviridae bacteriophages, host range is thought to primarily be determined by proteins at the tip of their tail fibers. These proteins act as anti-receptors to specific receptors on the surface of bacteria. In siphoviridae Gram-positive infecting phages, the genes that code these proteins are typically located between the tape measure protein gene and the endolysin gene. It is hypothesized that phages that have similar anti-receptor proteins will have similar host range. In this study, the host ranges of 12 BD1 bacteriophages were tested on 9 different Streptomyces species. In these 12 phages, the genes between the tape measure protein gene and endolysin gene were compared. The 12 phages had high levels of variability in these genes. Five genes …
Date: May 2019
Creator: Klug, Hannah
System: The UNT Digital Library
Isolation and Genomic Characterization of 45 Novel Bacteriophages Infecting the Soil Bacterium Streptomyces griseus (open access)

Isolation and Genomic Characterization of 45 Novel Bacteriophages Infecting the Soil Bacterium Streptomyces griseus

Bacteriophages, or simply "phages," are the most abundant biological entities on the planet and are thought to be the largest untapped reservoir of available genetic information. They are also important contributors to both soil health and nutrient recycling and have significantly influenced our current understanding of molecular biology. Bacteria in the genus Streptomyces are also known to be important contributors to soil health, as well as producing a number of useful antibiotics. The genetic diversity of large (> 30) groups of other actinobacteriophages, i.e. phages infecting a few close relatives of the Streptomycetes, has been explored, but this is the first formal effort for Streptomyces-infecting phages. Described here are a group of 45 phages, isolated from soil using a single Streptomycete host, Streptomyces griseus ATCC 10137. All 45 phages are tailed phages with double-stranded DNA. Siphoviruses predominate, six of the phages are podoviruses, and no myoviruses were observed. Notably present are seven phages with prolate icosahedral capsids. Genome lengths and genome termini vary considerably, and the distributions of each are in line with findings among other groups of studied actinobacteriophages. Interestingly, the average G+C among the 45 phages is around 11% lower than that of the isolation host, a larger …
Date: December 2018
Creator: Hale, Richard
System: The UNT Digital Library
Lipogenic Proteins in Plants: Functional Homologues and Applications (open access)

Lipogenic Proteins in Plants: Functional Homologues and Applications

Although cytoplasmic lipid droplets (LDs) are the major reserves for energy-dense neutral lipids in plants, the cellular mechanisms for packaging neutral lipids into LDs remain poorly understood. To gain insights into the cellular processes of neutral lipid accumulation and compartmentalization, a necessary step forward would be to characterize functional roles of lipogenic proteins that participate in the compartmentalization of neutral lipids in plant cells. In this study, the lipogenic proteins, Arabidopsis thaliana SEIPIN homologues and mouse (Mus Musculus) fat storage-inducing transmembrane protein 2 (FIT2), were characterized for their functional roles in the biogenesis of cytoplasmic LDs in various plant tissues. Both Arabidopsis SEIPINs and mouse FIT2 supported the accumulation of neutral lipids and cytoplasmic LDs in plants. The three Arabidopsis SEIPIN isoforms play distinct roles in compartmentalizing neutral lipids by enhancing the numbers and sizes of LDs in various plant tissues and developmental stages. Further, the potential applications of Arabidopsis SEIPINs and mouse FIT2 in engineering neutral lipids and terpenes in plant vegetative tissues were evaluated by co-expressing these and other lipogenic proteins in Nicotiana benthamiana leaves. Arabidopsis SEIPINs and mouse FIT2 represent effective tools that may complement ongoing strategies to enhance the accumulation of desired neutral lipids and terpenes …
Date: December 2018
Creator: Cai, Yingqi
System: The UNT Digital Library
Compartmentalization of Jojoba Seed Lipid Metabolites (open access)

Compartmentalization of Jojoba Seed Lipid Metabolites

Seeds from the desert shrub Simmondsia chinensis (jojoba) are one of the only known natural plant sources to store a majority of its oil in the form of liquid wax esters (WE) instead of triacylglycerols (TAGs) and these oils account for ~55% of the seed weight. Jojoba oil is highly valued as cosmetic additives and mechanical lubricants, yet despite its value much is still unknown about its neutral lipid biosynthetic pathways and lipid droplet packaging machinery. Here, we have used a multi-"omics" approach to study how spatial differences in lipid metabolites, gene expression, and lipid droplet proteins influence the synthesis and storage of jojoba lipids. Through these studies mass spectrometry analyses revealed that WEs are compartmentalized primarily in the cotyledonary tissues, whereas TAGs are, surprisingly, localized to the embryonic axis tissues. To study the differences in gene expression between these two tissues, a de novo transcriptome was assembled from high throughput RNAseq data. Differential gene expression analysis revealed that the Jojoba Wax Synthase, which catalyzes the formation of wax esters, and the Diacylglycerol O-Acyltransferase1, which catalyzes the final acylation of triacylglycerol synthesis, were differentially expressed in the cotyledons and embryonic axis tissues, respectively. Furthermore, through proteomic analysis of lipid droplet …
Date: December 2018
Creator: Sturtevant, Drew
System: The UNT Digital Library
Analysis of Mature and Young Thrombocytes in Zebrafish (open access)

Analysis of Mature and Young Thrombocytes in Zebrafish

Eukaryotic platelets are small cell fragments that are released into the bloodstream from megakaryocytes, and their production is initiated in the bone marrow. They are mainly involved in blood hemostasis and thrombus formation. The newly synthesized platelets are called reticulated platelets or young platelets. Zebrafish thrombocytes are equivalent to mammalian platelets and have similar characteristics and functions. Likewise, zebrafish has both young and mature thrombocytes. Only young thrombocytes as reticulated platelets are labeled with thiazole orange. Similarly, labeling zebrafish thrombocytes with a specific concentration of DiI-C18 showed two populations of thrombocytes (DiI+ and DiI-). Again, only young thrombocytes showed DiI+ labeling. The mechanism of selective labeling of young thrombocytes by is unknown. Furthermore, there is no zebrafish line where young and mature thrombocytes are differentially labeled with fluorescence proteins. Therefore, in this study, we identified and confirmed that the RFP labeled cells of Glofish were young thrombocytes. In addition, we found that myosin light chain 2 (MLC2) promoter is expressed in young thrombocytes. We also generated a transgenic zebrafish line, GloFli fish, where the young and mature thrombocytes are labeled with red and green fluorescence proteins respectively. Furthermore, this study showed a two-fold increase in glycerol-phospholipids (GP) in mature thrombocytes …
Date: August 2018
Creator: Fallatah, Weam
System: The UNT Digital Library
Revisiting the Neuroprotective Role of 17B-Estradiol (E2): A Multi-Omics Based Analysis of the Rat Brain and Serum (open access)

Revisiting the Neuroprotective Role of 17B-Estradiol (E2): A Multi-Omics Based Analysis of the Rat Brain and Serum

The ovarian hormone 17β-estradiol (E2) is one of the central regulators of the female reproductive system. E2 is also a pleiotropic regulator since it can exert its non-reproductive role on other organ systems. E2 is neuroprotective, it maintains body's energy homeostasis, participates in various repair mechanism and is required for neural development. However, there is a substantial evidence suggesting that there might be a molecular reprogramming of E2's action when it is supplied exogenously after E2 deprivation. Though the length of E2 deprivation and age has been linked to this phenomenon, the molecular components and how they activate this reprogramming is still elusive. Our main goal was to perform global proteomics and metabolomics study to identify the molecular components and their interaction networks that are being altered in the brain and serum after a short-term E2 treatment following ovariectomy (OVX) in Sprague Dawley rats. One of the strength of our global study is that it gave us extensive information on the brain proteome itself by identification of a wide number of proteins in different brain sections. By analyzing the differentially expressed proteins, our proteomics study revealed 49 different networks to be altered in 7 sections of the brain. Most of …
Date: August 2018
Creator: Zaman, Khadiza
System: The UNT Digital Library
Studies in Trypsin as an Alarm Substance in Zebrafish (open access)

Studies in Trypsin as an Alarm Substance in Zebrafish

Previous studies have shown that fish release alarming substances into the water to alert their kin to escape from danger. In our laboratory, we found that zebrafish produce trypsin and release it from their gills into the environment when they are under stress. By placing the zebrafish larvae in the middle of a small tank and then placing trypsin at one end of the tank, we observed that the larvae moved away from the trypsin zone and almost to the opposite end of the tank. This escape response was significant and did not occur in response to the control substances, bovine serum albumin (BSA), Russell's viper venom (RVV), and collagen. Also, previously, we had shown that the trypsin could act via a protease-activated receptor-2 (PAR2) on the surface of the cells. Therefore, we hypothesized that trypsin would induce a change in neuronal activity in the brain via PAR2-mediated signaling in cells on the surface of the fish body. To investigate whether the trypsin-responsive cells were surface cells, we generated a primary cell culture of zebrafish keratinocytes, confirmed these cells' identity by specific marker expression, and then incubated these cells with the calcium indicator Fluo-4 and exposed them to trypsin. By …
Date: August 2018
Creator: Alsrhani, Abdullah Falleh
System: The UNT Digital Library
Isolation and Characterization of Phages Infecting Streptomyces azureus (open access)

Isolation and Characterization of Phages Infecting Streptomyces azureus

Isolating novel phages using Streptomyces azureus, which produces antibiotic thiostrepton, as a host, and characterizing the genomes may help us to find new tools that could be used to develop antibiotics in addition to contribute to the databases of phages and specifically, Streptomyces phages. Streptomyces phages Alsaber, Omar, Attoomi, Rowa, and ZamZam were isolated using during this study. They were isolated from enriched soil and sequenced by Illumina sequencing method. They were isolated from three different geographical regions. They are siphoviridae phages that create small clear plaques with a diameter of approximately 0.5-1 mm, except for Rowa which has cloudy plaques, and they have varied sizes of their heads and tails. ZamZam was not characterized at this time. The sequencing shows that they are circular genome with 3' sticky overhang and various genomes' sizes with high percentage of GC content with the average of 66%. Alsaber was classified under sub-cluster BD3, while Omar was categorized under sub-cluster BD2. They share the same cluster of Cluster BD. Rowa was placed in Cluster BL and Attoomi is currently a singleton that does not fit into an established cluster. Alsaber yields 76 putative genes with no tRNA, Omar 81 putative genes with 1 …
Date: May 2018
Creator: Sulaiman, Ahmad M.
System: The UNT Digital Library
Rapid Metabolic Response of Plants Exposed to Light Stress (open access)

Rapid Metabolic Response of Plants Exposed to Light Stress

Environmental stress conditions can drastically affect plant growth and productivity. In contrast to soil moisture or salinity that can gradually change over a period of days or weeks, changes in light intensity or temperature can occur very rapidly, sometimes over the course of minutes or seconds. So, in our study we have taken an metabolomics approach to identify the rapid response of plants to light stress. In the first part we have focused on the ultrafast (0-90 sec) metabolic response of local tissues to light stress and in the second part we analyzed the metabolic response associated with rapid systemic signaling (0-12 min). Analysis of the rapid response of Arabidopsis to light stress has revealed 111 metabolites that significantly alter in their level during the first 90 sec of light stress exposure. We further show that the levels of free and total glutathione accumulate rapidly during light stress in Arabidopsis and that the accumulation of total glutathione during light stress is dependent on an increase in nitric oxide (NO) levels. We further suggest that the increase in precursors for glutathione biosynthesis could be linked to alterations in photorespiration, and that phosphoenolpyruvate could represent a major energy and carbon source for …
Date: May 2018
Creator: Choudhury, Feroza Kaneez
System: The UNT Digital Library
Phylogenetic and Functional Characterization of Cotton (Gossypium hirsutum) CENTRORADIALIS/TERMINAL FLOWER1/SELF-PRUNING Genes (open access)

Phylogenetic and Functional Characterization of Cotton (Gossypium hirsutum) CENTRORADIALIS/TERMINAL FLOWER1/SELF-PRUNING Genes

Plant architecture is an important agronomic trait driven by meristematic activities. Indeterminate meristems set repeating phytomers while determinate meristems produce terminal structures. The centroradialis/terminal flower1/self pruning (CETS) gene family modulates architecture by controlling determinate and indeterminate growth. Cotton (G. hirsutum) is naturally a photoperiodic perennial cultivated as a day-neutral annual. Management of this fiber crop is complicated by continued vegetative growth and asynchronous fruit set. Here, cotton CETS genes are phylogenetically and functionally characterized. We identified eight CETS genes in diploid cotton (G. raimondii and G. arboreum) and sixteen in tetraploid G. hirsutum that grouped within the three generally accepted CETS clades: flowering locus T (FT)-like, terminal flower1/self pruning (TFL1/SP)-like, and mother of FT and TFL1 (MFT)-like. Over-expression of single flower truss (GhSFT), the ortholog to Arabidopsis FT, accelerates the onset of flowering in Arabidopsis Col-0. In mutant rescue analysis, this gene driven by its native promoter rescues the ft-10 late flowering phenotype. GhSFT upstream sequence was used to drive expression of the uidA reporter gene. As anticipated, GUS accumulated in the vasculature of Arabidopsis leaves. Cotton has five TFL1-like genes, all of which delay flowering when ectopically expressed in Arabidopsis; the strongest phenotypes fail to produce functional flowers. Three …
Date: December 2017
Creator: Prewitt, Sarah F.
System: The UNT Digital Library
The Generation of Recombinant Zea mays Spastin and Katanin Proteins for In Vitro Analysis (open access)

The Generation of Recombinant Zea mays Spastin and Katanin Proteins for In Vitro Analysis

Plant microtubules play essential roles in cell processes such as cell division, cell elongation, and organelle organization. Microtubules are arranged in highly dynamic and ordered arrays, but unlike animal cells, plant cells lack centrosomes. Therefore, microtubule nucleation and organization are governed by microtubule-associated proteins, including a microtubule-severing protein, katanin. Mutant analysis and in vitro characterization has shown that the highly conserved katanin is needed for the organization of the microtubule arrays in Arabidopsis and rice as well as in a variety of animal models. Katanin is a protein complex that is part of the AAA+ family of ATPases. Katanin is composed of two subunits, katanin-p60, a catalytic subunit and katanin-p80, a regulatory subunit. Spastin is another MT-severing protein that was identified on the basis of its homology to katanin. In animal cells, spastin is also needed for microtubule organization, but its functionality has not yet been investigated in plants. To initiate an exploration of the function of katanin-p60 and spastin in Zea mays, my research goal was to generate tools for the expression and purification of maize katanin-p60 and spastin proteins in vitro. Plasmids that express katanin-p60 and spastin with N-terminal GST tags were designed and constructed via In-Fusion® cloning …
Date: December 2017
Creator: Alodailah, Sattam Sonitan
System: The UNT Digital Library
Stability of Myosin Subfragment-2 Modulates the Force Produced by Acto-Myosin Interaction of Striated Muscle (open access)

Stability of Myosin Subfragment-2 Modulates the Force Produced by Acto-Myosin Interaction of Striated Muscle

Myosin subfragment-2 (S2) is a coiled coil linker between myosin subfragment-1 and light meromyosin (LMM). This dissertation examines whether the myosin S2 coiled coil could regulate the amount of myosin S1 heads available to bind actin thin filaments by modulating the stability of its coiled coil. A stable myosin S2 coiled coil would have less active myosin S1 heads compared to a more flexible myosin S2 coiled coil, thus causing increased force production through acto-myosin interaction. The stability of the myosin S2 coiled coil was modulated by the binding of a natural myosin S2 binding protein, myosin binding protein C (MyBPC), and synthetic myosin S2 binding proteins, stabilizer and destabilizer peptide, to myosin S2. Competitive enzyme linked immunosorbent assay (cELISA) experiments revealed the cross specificity and high binding affinity of the synthetic peptides to the myosin S2 of human cardiac and rabbit skeletal origins. Gravitational force spectroscopy (GFS) was performed to test the stability of myosin S2 coiled coil in the presence of these myosin S2 binding proteins. GFS experiments demonstrated the stabilization of the myosin S2 coiled coil by the binding of MyBPC and stabilizer peptide to myosin S2, while the binding of destabilizer peptide to the same resulted …
Date: December 2017
Creator: Singh, Rohit Rajendraprasad
System: The UNT Digital Library
Homologs of Mammalian Lysosomal Lipase in Arabidopsis and Their Roles in Lipid Droplet Dynamics (open access)

Homologs of Mammalian Lysosomal Lipase in Arabidopsis and Their Roles in Lipid Droplet Dynamics

Lipid droplets (LDs) are organelles with many functions in cells and numerous protein interactors facilitate their biogenesis, maintenance, and turnover. The mammalian lipase responsible for LD turnover during lipophagy, LipA, has two candidate homologs in Arabidopsis: MPL1 and LIP1. One or both of these plant homologs may function in a similar manner to mammalian LipA, providing an LD breakdown pathway. To test this hypothesis, wild type (WT) Arabidopsis plants, MPL1 over-expressing (OE) mutants, and T-DNA insertion mutants of MPL1 (mpl1) and LIP1 (lip1) were examined for LD phenotypes in normal conditions and in environments where LD numbers are known to fluctuate. Plants to be imaged by confocal microscopy were exposed to heat stress and wounding to increase LD accumulation, senescence was induced in leaves to deplete lipids, and LDs were imaged throughout the day/night period to observe their diurnal regulation. The mutation of both MPL1 and LIP1 lead to an increase in LDs within the leaf mesophyll cells, although the spatial distribution of the LDs differed between the two mutants. mpl1 mutants had disrupted diurnal regulation of their LDs, but lip1 mutants did not. Alternately, lip1 mutants retained LDs during dark-induced senescence, and mpl1 mutants did not. Together these results …
Date: December 2017
Creator: McClinchie, Elizabeth A
System: The UNT Digital Library
Development of a Targeted Protein Residue Analysis Approach in Archaeology (open access)

Development of a Targeted Protein Residue Analysis Approach in Archaeology

Liquid chromatography-mass spectrometry (LC-MS) based proteomic methods have provided archaeologists with a powerful tool for the discovery and identification of proteins within artifacts. Traditionally, discovery-based methods have utilized a non-targeted full mass scan method in an attempt to identify all proteins present within a given sample. However, increased sensitivity is often needed to target specific proteins in order to test hypotheses. Proteins present within archaeological materials present a unique challenge, as they are often subjected to a variety of chemical transformations both before and after burial. Any preserved proteins will be present within a complex mixture of compounds, and full mass scans often fail to detect less abundant proteins of interest. Consistent and reliable targeted methods are needed to detect protein biomarkers. Taphonomic experimentation was employed as a means to identify the effect of particular processes and conditions on the preservation of mare's milk proteins. In addition, three LC-MS methods were evaluated for their efficiency in identifying mare's milk-specific peptide biomarkers from experimental pottery samples. The ability to reliably detect the presence of these species-specific peptides can help provide evidence about past cultural groups, including the origins of dairying and animal domestication.
Date: August 2017
Creator: Scott, Ashley
System: The UNT Digital Library
Development of von Willebrand Factor Zebrafish Mutant Using CRISPR/Cas9 Mediated Genome Editing (open access)

Development of von Willebrand Factor Zebrafish Mutant Using CRISPR/Cas9 Mediated Genome Editing

von Willebrand factor (VWF) protein acts in the intrinsic coagulation pathway by stabilizing FVIII from proteolytic clearance and at the site of injury, by promoting the adhesion and aggregation of platelets to the exposed subendothelial wall. von Willebrand disease (VWD) results from quantitative and qualitative deficiencies in VWF protein. The variability expressivity in phenotype presentations is in partly caused by the action of modifier genes. Zebrafish has been used as hemostasis animal model. However, it has not been used to evaluate VWD. Here, we report the development of a heterozygote VWF mutant zebrafish using the genome editing CRISPR/Cas9 system to screen for modifier genes involved in VWD. We designed CRISPR oligonucleotides and inserted them into pT7-gRNa plasmid. We then prepared VWF gRNA along with the endonuclease Cas9 RNA from Cas9 plasmid. We injected these two RNAs into 1-4 cell-stage zebrafish embryos and induced a mutation in VWF exon 29 of the zebrafish with a mutagenesis rate of 16.6% (3/18 adult fish). Also, we observed a germline transmission with an efficiency rate of 5.5% (1/18 adult fish). We obtained a deletion in exon 29 which should result in truncated VWF protein.
Date: May 2017
Creator: Toffessi Tcheuyap, Vanina
System: The UNT Digital Library
Presence of Wolbachia, A Potential Biocontrol Agent: Screening for Vertebrate Blood Meal Source and West Nile Virus in Mosquitoes in the North Texas Region (open access)

Presence of Wolbachia, A Potential Biocontrol Agent: Screening for Vertebrate Blood Meal Source and West Nile Virus in Mosquitoes in the North Texas Region

West Nile virus (WNV) is a geographically endemic mosquito-borne flavivirus that has spread across the United States infecting birds, mosquitos, humans, horses and other mammals. The wide spread nature of this virus is due to the ability of the mosquito vector to persist in broad, ecological diverse environments across the United States. In this study, mosquito populations in North Texas region were sampled for detection of Wolbachia, blood meal source, and WNV. The ultimate goal of this study was to examine the potential of a biocontrol agent, Wolbachia sp. that colonizes the hindgut of various insects, including mosquitos, as a natural means to interrupt virus transmission from mosquitos to other hosts, including humans. In Australia, Wolbachia sp. from fruit flies (Drosophila melanogaster) have been successfully used to block transmission of a similar pathogenic virus from mosquitos responsible for transmission of Dengue fever. Here, mosquitoes were collected using CDC style Gravid Traps in Denton, Texas, from October 2012 through September 2014. Collected mosquitoes were identified, sexed, and categorized as to the amount of host blood in their alimentary system using a Zeiss Axio Zoom microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY). Culex quinquefaciatus was the dominant blood engorged species collected. Smaller …
Date: August 2016
Creator: Adiji, Olubu Adeoye
System: The UNT Digital Library
Cytochrome P450 Gene Expression Modulates Anoxia Sensitivity in Caenorhabditis Elegans (open access)

Cytochrome P450 Gene Expression Modulates Anoxia Sensitivity in Caenorhabditis Elegans

With an increasing population suffering from obesity or Diabetes Mellitus (DM), it is more pertinent than ever to understand how physiological changes impact cellular processes. Patients with DM often suffer from obesity, hyperglycemia, altered fatty acids that contribute to vascular dysfunction, and increased risk to ischemia. Caenorhabditis elegans is a model system used to study the conserved insulin signaling pathway, cellular responses in whole organisms and the impact a glucose diet has on oxygen deprivation (anoxia) responses. RNA-sequencing (RNA-Seq) was used to analyze the expression of genes in the anoxia sensitive populations of N2 (wild-type) fed glucose and hyl-2(tm2031), a mutant with altered ceramide metabolism. Comparison of the altered transcripts in the anoxia sensitive populations revealed 199 common transcripts- 192 upregulated and 7 downregulated. One of the gene families that have altered expression in the anoxia sensitive populations encode for Cytochrome P450 (CYP). CYPs are located both in the mitochondria and endoplasmic reticulum (ER), but the CYPs of interest are all predicted to be mainly subcellularly localized to the ER. Here, I determined that knock-down of specific cyp genes, using RNA interference (RNAi), increased anoxia survival in N2 animals fed a standard diet. Anoxia sensitivity of the hyl-2(tm2031) animals was …
Date: August 2016
Creator: Quan, Daniel L
System: The UNT Digital Library
Influence of a Human Lipodystrophy Gene Homologue on Neutral Lipid Accumulation in Arabidopsis Leaves (open access)

Influence of a Human Lipodystrophy Gene Homologue on Neutral Lipid Accumulation in Arabidopsis Leaves

CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common leaf specific fatty acids. Leaves of mature cgi-58 plants exhibited a marked increase in absolute triacylglycerol levels, more than 10-fold higher than in wild-type plants. Lipid levels in the oil-storing seeds of cgi-58 loss-of-function plants were unchanged, and unlike mutations in beta-oxidation, the cgi-58 seeds germinated and grew normally, requiring no rescue with sucrose. We conclude that the participation of CGI-58 in neutral lipid homeostasis of nonfat-storing tissues is similar, although not identical, between plant and animal species. This unique insight may have implications for designing a new generation of technologies that enhance the neutral lipid content and composition of corp plants.
Date: August 2016
Creator: James, Christopher Neal
System: The UNT Digital Library
Identification of Hox Genes Controlling Thrombopoiesis in Zebrafish (open access)

Identification of Hox Genes Controlling Thrombopoiesis in Zebrafish

Thrombocytes are functional equivalents of mammalian platelets and also possess megakaryocyte features. It has been shown earlier that hox genes play a role in megakaryocyte development. Our earlier microarray analysis showed five hox genes, hoxa10b, hoxb2a, hoxc5a, hoxc11b and hoxd3a, were upregulated in zebrafish thrombocytes. However, there is no comprehensive study of genome wide scan of all the hox genes playing a role in megakaryopoiesis. I first measured the expression levels of each of these hox genes in young and mature thrombocytes and observed that all the above hox genes except hoxc11b were expressed equally in both populations of thrombocytes. hoxc11b was expressed only in young thrombocytes and not in mature thrombocytes. The goals of my study were to comprehensively knockdown hox genes and identify the specific hox genes involved in the development of thrombocytes in zebrafish. However, the existing vivo-morpholino knockdown technology was not capable of performing such genome-wide knockdowns. Therefore, I developed a novel cost- effective knockdown method by designing an antisense oligonucleotides against the target mRNA and piggybacking with standard control morpholino to silence the gene of interest. Also, to perform knockdowns of the hox genes and test for the number of thrombocytes, the available techniques were …
Date: December 2015
Creator: Sundaramoorthi, Hemalatha
System: The UNT Digital Library
Role of GPR17 in Thrombocyte Aggregation in Adult Zebrafish (open access)

Role of GPR17 in Thrombocyte Aggregation in Adult Zebrafish

GPR17, a uracil nucleotide cysteinyl leukotriene receptor, belongs to the GPCR (G protein coupled receptor) family. It has been shown recently that inhibiting this protein in the nervous system in mice can lead to blockage of oligodendrocyte maturation, which supports myelin repair. Interestingly, our laboratory found GPR17 in thrombocytes. However, we do not know whether it has any function in thrombocyte aggregation or the nature of the ligand. In this paper, we studied the role of GPR17 in hemostasis, which is a fundamental defense mechanism in the event of injury. Using zebrafish as a model system, our laboratory has studied specifically thrombocytes, which play a significant role in hemostasis. The major reasons to use zebrafish as a model system are that their thrombocytes are functionally equivalent to human platelets, the adult fish are amenable to knockdown experiments, and they are readily available in the market. This study was performed by using a piggy back knockdown method where we used a chemical hybrid of control morpholino and an antisense oligonucleotide sequence leads to the degradation the mRNA for GPR17. After knockdown GPR17 in thrombocytes, the percent difference of the thrombocytes aggregation between the control and knockdown blood samples was measured by …
Date: December 2015
Creator: Bohassan, Maruah Hejey
System: The UNT Digital Library