Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties (open access)

Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties

The objective of this study is to examine core-shell type plasmonic metamaterials aimed at the development of materials with unique electromagnetic properties. The building blocks of metamaterials under study consist of gold as a metal component, and silica and precipitated calcium carbonate (PCC) as the dielectric media. The results of this study demonstrate important applications of the core-shells including scattering suppression, airborne obscurants made of fractal gold shells, photomodification of the fractal structure providing windows of transparency, and plasmonics core-shell with a gain shell as an active device. Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction. Significant extinction from the visible to mid-infrared makes fractal shells very attractive as bandpass filters and aerosolized obscurants. In contrast to the planar fractal films, where the absorption and reflection equally contribute to the extinction, the shells' extinction is caused mainly by the absorption. This work shows that the Mie scattering resonance of a silica core with 780 nm diameter at 560 nm is suppressed by 75% and only partially substituted by the absorption in the shell so that the total transmission is noticeably increased. Effective medium theory supports …
Date: December 2017
Creator: De Silva, Vashista C
System: The UNT Digital Library
Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction (open access)

Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Light matter interactions have led to a great part of our current understanding of the universe. When light interacts with matter it affects the properties of both the light and the matter. Visible light, being in the region that the human eye can "see," was one of the first natural phenomenon we used to learn about our universe. The application of fundamental physics research has spilled over into other fields that were traditionally separated from physics, being considered two different sciences. Current physics research has applications in all scientific fields. By taking a more physical approach to problems in fields such as chemistry and biology, we have furthered our knowledge of both. Nanocrystals have many interesting optical properties. Furthermore, the size and properties of nanocrystals has given them applications in materials ranging from solar cells to sunscreens. By understanding and controlling their interactions with systems we can utilize them to increase our knowledge in other fields of science, such as biology. Nanocrystals exhibit optical properties superior to currently used fluorescent dyes. By replacing molecular dyes with nanoparticles we can reduce toxicity, increase resolution and have better cellular targeting abilities. They have also shown to have toxicity to cancer and antibacterial …
Date: May 2013
Creator: Urban, Ben E.
System: The UNT Digital Library
Criticality in Cooperative Systems (open access)

Criticality in Cooperative Systems

Cooperative behavior arises from the interactions of single units that globally produce a complex dynamics in which the system acts as a whole. As an archetype I refer to a flock of birds. As a result of cooperation the whole flock gets special abilities that the single individuals would not have if they were alone. This research work led to the discovery that the function of a flock, and more in general, that of cooperative systems, surprisingly rests on the occurrence of organizational collapses. In this study, I used cooperative systems based on self-propelled particle models (the flock models) which have been proved to be virtually equivalent to sociological network models mimicking the decision making processes (the decision making model). The critical region is an intermediate condition between a highly disordered state and a strong ordered one. At criticality the waiting times distribution density between two consecutive collapses shows an inverse power law form with an anomalous statistical behavior. The scientific evidences are based on measures of information theory, correlation in time and space, and fluctuation statistical analysis. In order to prove the benefit for a system to live at criticality, I made a flock system interact with another similar …
Date: May 2012
Creator: Vanni, Fabio
System: The UNT Digital Library
A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation (open access)

A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation

SiC has become an attractive wide bandgap semiconductor due to its unique physical and electronic properties and is widely used in high temperature, high frequency, high power and radiation resistant applications. SiC has been used as an alternative to Si in harsh environments such as in the oil industry, nuclear power systems, aeronautical, and space applications. SiC is also known for its polytypism and among them 3C-SiC, 4H-SiC and 6H-SiC are the most common polytypes used for research purposes. Among these polytypes 4H-SiC is gaining importance due to its easy commercial availability with a large bandgap of 3.26 eV at room temperature. Controlled creation of defects in materials is an approach to modify the electronic properties in a way that new functionality may result. SiC is a promising candidate for defect-induced magnetism on which spintronic devices could be developed. The defects considered are of room temperature stable vacancy types, eliminating the need for magnetic impurities, which easily diffuse at room temperature. Impurity free vacancy type defects can be created by implanting the host atoms of silicon or carbon. The implantation fluence determines the defect density, which is a critical parameter for defect induced magnetism. Therefore, we have studied the influence …
Date: May 2013
Creator: Kummari, Venkata Chandra Sekhar
System: The UNT Digital Library
A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine Structure (open access)

A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine Structure

Spectroscopic measurements of the helium atom are performed to high precision using an atomic beam apparatus and electro-optic laser techniques. These measurements, in addition to serving as a test of helium theory, also provide a new determination of the fine structure constant α. An apparatus was designed and built to overcome limitations encountered in a previous experiment. Not only did this allow an improved level of precision but also enabled new consistency checks, including an extremely useful measurement in 3He. I discuss the details of the experimental setup along with the major changes and improvements. A new value for the J = 0 to 2 fine structure interval in the 23P state of 4He is measured to be 31 908 131.25(30) kHz. The 300 Hz precision of this result represents an improvement over previous results by more than a factor of three. Combined with the latest theoretical calculations, this yields a new determination of α with better than 5 ppb uncertainty, α-1 = 137.035 999 55(64).
Date: August 2010
Creator: Smiciklas, Marc
System: The UNT Digital Library
Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen Production (open access)

Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen Production

Comparisons between measurements of the ground-state hyperfine structure and gravitational acceleration of hydrogen and antihydrogen could provide a test of fundamental physical theories such as CPT (charge conjugation, parity, time-reversal) and gravitational symmetries. Currently, antihydrogen traps are based on Malmberg-Penning traps. The number of antiprotons in Malmberg-Penning traps with sufficiently low energy to be suitable for trappable antihydrogen production may be reduced by the electrostatic space charge of the positrons and/or collisions among antiprotons. Alternative trap designs may be needed for future antihydrogen experiments. A computational tool is developed to simulate charged particle motion in customizable magnetic fields generated by combinations of current loops and current lines. The tool is used to examine charged particle confinement in two systems consisting of dual, levitated current loops. The loops are coaxial and arranged to produce a magnetic null curve. Conditions leading to confinement in the system are quantified and confinement modes near the null curve and encircling one or both loops are identified. Furthermore, the tool is used to examine and quantify charged particle motion parallel to the null curve in the large radius limit of the dual, levitated current loops. An alternative to new trap designs is to identify the effects …
Date: May 2016
Creator: Lane, Ryan A.
System: The UNT Digital Library
Local Phase Manipulation for Multi-Beam Interference Lithography for the Fabrication of Two and Three Dimensional Photonic Crystal Templates (open access)

Local Phase Manipulation for Multi-Beam Interference Lithography for the Fabrication of Two and Three Dimensional Photonic Crystal Templates

In this work, we study the use of a spatial light modulator (SLM) for local manipulation of phase in interfering laser beams to fabricate photonic crystal templates with embedded, engineered defects. A SLM displaying geometric phase patterns was used as a digitally programmable phase mask to fabricate 4-fold and 6-fold symmetric photonic crystal templates. Through pixel-by-pixel phase engineering, digital control of the phases of one or more of the interfering beams was demonstrated, thus allowing change in the interference pattern. The phases of the generated beams were programmed at specific locations, resulting in defect structures in the fabricated photonic lattices such as missing lattice line defects, and single-motif lattice defects in dual-motif lattice background. The diffraction efficiency from the phase pattern was used to locally modify the filling fraction in holographically fabricated structures, resulting in defects with a different fill fraction than the bulk lattice. Through two steps of phase engineering, a spatially variant lattice defect with a 90° bend in a periodic bulk lattice was fabricated. Finally, by reducing the relative phase shift of the defect line and utilizing the different diffraction efficiency between the defect line and the background phase pattern, desired and functional defect lattices can be …
Date: December 2016
Creator: Lutkenhaus, Jeffrey Ryan
System: The UNT Digital Library
Low-Energy Electron Irradiation of Preheated and Gas-Exposed Single-Wall Carbon Nanotubes (open access)

Low-Energy Electron Irradiation of Preheated and Gas-Exposed Single-Wall Carbon Nanotubes

We investigate the conditions under which electron irradiation of single-walled carbon nanotube (SWCNT) bundles with 2 keV electrons produces an increase in the Raman D peak. We find that an increase in the D peak does not occur when SWCNTs are preheated in situ at 600 C for 1 h in ultrahigh vacuum (UHV) before irradiation is performed. Exposing SWCNTs to air or other gases after preheating in UHV and before irradiation results in an increase in the D peak. Small diameter SWCNTs that are not preheated or preheated and exposed to air show a significant increase in the D and G bands after irradiation. X-ray photoelectron spectroscopy shows no chemical shifts in the C1s peak of SWCNTs that have been irradiated versus SWCNTs that have not been irradiated, suggesting that the increase in the D peak is not due to chemisorption of adsorbates on the nanotubes.
Date: December 2016
Creator: Ecton, Philip
System: The UNT Digital Library
Ion Beam Synthesis of Binary and Ternary Transition Metal Silicide Thin Films (open access)

Ion Beam Synthesis of Binary and Ternary Transition Metal Silicide Thin Films

Among the well-known methods to form or modify the composition and physical properties of thin films, ion implantation has shown to be a very powerful technique. In particular, ion beam syntheses of binary iron silicide have been studied by several groups. Further, the interests in transition metal silicide systems are triggered by their potential use in advanced silicon based opto-electronic devices. In addition, ternary silicides have been by far less studied than their binary counterparts despite the fact that they have interesting magnetic and electronic properties. In this study, we investigate ion beam synthesis of Fe-Si binary structures and Fe-Co-Si ternary structures. This work involves fundamental investigation into development of a scalable synthesis process involving binary and ternary transitional metal silicide thin films and Nano-structures using low energy ion beams. Binary structures were synthesized by implanting Fe- at 50 keV energy. Since ion implantation is a dynamic process, Dynamic simulation techniques were used in these studies to determine saturation fluences for ion implantation. Also, static and dynamic simulation results were compared with experimental results. The outcome of simulations and experimental results indicate, dynamic simulation codes are more suitable than static version of the TRIM to simulate high fluence, low energy …
Date: December 2016
Creator: Lakshantha, Wickramaarachchige Jayampath
System: The UNT Digital Library
Interacting complex systems: theory and application to real-world situations (open access)

Interacting complex systems: theory and application to real-world situations

The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.
Date: August 2017
Creator: Piccinini, Nicola
System: The UNT Digital Library
Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations (open access)

Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations

Recent experimentation with excitation of surface plasmons on a gold film in the Kretschmann configuration have shown what appears to be a superconductive effect. Researchers claimed to see the existence of electron pairing during scattering as well as magnetic field repulsion while twisting the polarization of the laser. In an attempt to explain this, they pointed to a combination of electron-electron scattering in external fields as well as dynamic screening via intense laser radiation. This paper expands upon the latter, taking a look at the properties of a dynamic polarization function, its effects on bulk and surface plasmon dispersion relations, and its various consequences.
Date: August 2017
Creator: Lanier, Steven t
System: The UNT Digital Library
Fabrication of Photonic Crystal Templates through Holographic Lithography and Study of their Optical and Plasmonic Properties in Aluminium Doped Zinc Oxide (open access)

Fabrication of Photonic Crystal Templates through Holographic Lithography and Study of their Optical and Plasmonic Properties in Aluminium Doped Zinc Oxide

This dissertation focuses on two aspects of integrating near-infrared plasmonics with electronics with the intent of developing the platform for future photonics. The first aspect focuses on fabrication by introducing and developing a simple, single reflective optical element capable of high–throughput, large scale fabrication of micro- and nano-sized structure templates using holographic lithography. This reflective optical element is then utilized to show proof of concept in fabricating three dimensional structures in negative photoresists as well as tuning subwavelength features in two dimensional compound lattices for the fabrication of dimer and trimer antenna templates. The second aspect focuses on the study of aluminum zinc oxide (AZO), which belongs to recently popularized material class of transparent conducting oxides, capable of tunable plasmonic capabilities in the near-IR regime. Holographic lithography is used to pattern an AZO film with a square lattice array that are shown to form standing wave resonances at the interface of the AZO and the substrate. To demonstrate device level integration the final experiment utilizes AZO patterned gratings and measures the variation of diffraction efficiency as a negative bias is applied to change the AZO optical properties. Additionally efforts to understand the behavior of these structures through optical measurements is …
Date: August 2017
Creator: George, David Ray
System: The UNT Digital Library
EEG, Alpha Waves and Coherence (open access)

EEG, Alpha Waves and Coherence

This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable …
Date: May 2010
Creator: Ascolani, Gianluca
System: The UNT Digital Library
Application of Statistical Physics in Human Physiology: Heart-Brain Dynamics (open access)

Application of Statistical Physics in Human Physiology: Heart-Brain Dynamics

This dissertation is devoted to study of complex systems in human physiology particularly heartbeats and brain dynamics. We have studied the dynamics of heartbeats that has been a subject of investigation of two independent groups. The first group emphasized the multifractal nature of the heartbeat dynamics of healthy subjects, whereas the second group had established a close connection between healthy subjects and the occurrence of crucial events. We have analyzed the same set of data and established that in fact the heartbeats are characterized by the occurrence of crucial and Poisson events. An increase in the percentage of crucial events makes the multifractal spectrum broader, thereby bridging the results of the former group with the results of the latter group. The crucial events are characterized by a power index that signals the occurrence of 1/f noise for complex systems in the best physiological condition. These results led us to focus our analysis on the statistical properties of crucial events. We have adopted the same statistical analysis to study the statistical properties of the heartbeat dynamics of subjects practicing meditation. The heartbeats of people doing meditation are known to produce coherent fluctuations. In addition to this effect, we made the surprising …
Date: August 2018
Creator: Bohara, Gyanendra
System: The UNT Digital Library
Fractional Calculus and Dynamic Approach to Complexity (open access)

Fractional Calculus and Dynamic Approach to Complexity

Fractional calculus enables the possibility of using real number powers or complex number powers of the differentiation operator. The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation for a fractional trajectory, that being an average over an ensemble of stochastic trajectories. With an ensemble average perspective, the explanation of the behavior of fractional chaotic systems changes dramatically. Before now what has been interpreted as intrinsic friction is actually a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. Nonlinear Langevin equation describes the mean field of a finite size complex network at criticality. Critical phenomena and temporal complexity are two very important issues of modern nonlinear dynamics and the link between them found by the author can significantly improve the understanding behavior of dynamical systems at criticality. The subject of temporal complexity addresses the challenging and especially helpful in addressing fundamental physical science issues beyond the limits of reductionism.
Date: December 2015
Creator: Beig, Mirza Tanweer Ahmad
System: The UNT Digital Library
Nonlinear and Quantum Optics Near Nanoparticles (open access)

Nonlinear and Quantum Optics Near Nanoparticles

We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. …
Date: December 2015
Creator: Dhayal, Suman
System: The UNT Digital Library
A Precise Few-nucleon Size Difference by Isotope Shift Measurements of Helium (open access)

A Precise Few-nucleon Size Difference by Isotope Shift Measurements of Helium

We perform high precision measurements of an isotope shift between the two stable isotopes of helium. We use laser excitation of the 2^3 S_1-2^3 P_0 transition at 1083 nm in a metastable beam of 3He and 4He atoms. A newly developed tunable laser frequency selector along with our previous electro-optic frequency modulation technique provides extremely reliable, adaptable, and precise frequency and intensity control. The intensity control contributes negligibly to overall experimental uncertainty by stabilizing the intensity of the required sideband and eliminating the unwanted frequencies generated during the modulation of 1083 nm laser carrier frequency. The selection technique uses a MEMS based fiber switch and several temperature stabilized narrow band (~3 GHz) fiber gratings. A fiber based optical circulator and an inline fiber amplifier provide the desired isolation and the net gain for the selected frequency. Also rapid (~2 sec.) alternating measurements of the 2^3 S_1-2^3 P_0 interval for both species of helium is achieved with a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates residual Doppler effects during the isotope shift measurement. An improved detection design and software control makes negligible subtle potential biases in the data collection. With these advances, combined with new …
Date: August 2015
Creator: Hassan Rezaeian, Nima
System: The UNT Digital Library
Exploring Growth Kinematics and Tuning Optical and Electronic Properties of Indium Antimonide Nanowires (open access)

Exploring Growth Kinematics and Tuning Optical and Electronic Properties of Indium Antimonide Nanowires

This dissertation work is a study of the growth kinematics, synthesis strategies and intrinsic properties of InSb nanowires (NWs). The highlights of this work include a study of the effect of the growth parameters on the composition and crystallinity of NWs. A change in the temperature ramp-up rate as the substrate was heated to reach the NW growth temperature resulted in NWs that were either crystalline or amorphous. The as-grown NWs were found to have very different optical and electrical properties. The growth mechanism for crystalline NWs is the standard vapor-liquid-solid growth mechanism. This work proposes two possible growth mechanisms for amorphous NWs. The amorphous InSb NWs were found to be very sensitive to laser radiation and to heat treatment. Raman spectroscopy measurements on these NWs showed that intense laser light induced localized crystallization, most likely due to radiation induced annealing of defects in the region hit by the laser beam. Electron transport measurements revealed non-linear current-voltage characteristics that could not be explained by a Schottky diode behavior. Analysis of the experimental data showed that electrical conduction in this material is governed by space charge limited current (SCLC) in the high bias-field region and by Ohm's law in the low …
Date: December 2018
Creator: Algarni, Zaina Sluman
System: The UNT Digital Library
Electrically Tunable Absorption and Perfect Absorption Using Aluminum-Doped Zinc Oxide and Graphene Sandwiched in Oxides (open access)

Electrically Tunable Absorption and Perfect Absorption Using Aluminum-Doped Zinc Oxide and Graphene Sandwiched in Oxides

Understanding the fundamental physics in light absorption and perfect light absorption is vital for device applications in detector, sensor, solar energy harvesting and imaging. In this research study, a large area fabrication of Al-doped ZnO/Al2O3/graphene/Al2O3/gold/silicon device was enabled by a spin-processable hydrophilic mono-layer graphene oxide. In contrast to the optical properties of noble metals, which cannot be tuned or changed, the permittivity of transparent metal oxides, such as Al-doped ZnO and indium tin oxide, are tunable. Their optical properties can be adjusted via doping or tuned electrically through carrier accumulation and depletion, providing great advantages for designing tunable photonic devices or realizing perfect absorption. A significant shift of Raman frequency up to 360 cm-1 was observed from graphene in the fabricated device reported in this work. The absorption from the device was tunable with a negative voltage applied on the Al-doped ZnO side. The generated absorption change was sustainable when the voltage was off and erasable when a positive voltage was applied. The reflection change was explained by the Fermi level change in graphene. The sustainability of tuned optical property in graphene can lead to a design of device with less power consumption.
Date: December 2018
Creator: Adewole, Murthada Oladele
System: The UNT Digital Library
Quantum Coherence Effects Coupled via Plasmons (open access)

Quantum Coherence Effects Coupled via Plasmons

This thesis is an attempt at studying quantum coherence effects coupled via plasmons. After introducing the quantum coherence in atomic systems in Chapter 1, we utilize it in Chapter 2 to demonstrate a new technique of detection of motion of single atoms or irons inside an optical cavity. By taking into account the interaction of coherences with surface plasmonic waves excited in metal nanoparticles, we provide a theoretical model along with experimental data in Chapter 3 to describe the modification of Raman spectra near metal nanoparticles. We show in chapter 4 that starting from two emitters, coupled via a plasmonic field, the symmetry breaking occurs, making detectable the simultaneous existence of the fast super-radiance and the slow sub-radiance emission of dye fluorescence near a plasmonic surface. In Chapter 5, we study the photon statistics of a group of emitters coupled via plasmons and by the use of quantum regression theorem, we provide a theoretical model to fully investigate the dependence of photon bunching and anti-bunching effects to the interaction between atoms, fields and surrounding mediums.
Date: December 2018
Creator: Moazzezi, Mojtaba
System: The UNT Digital Library
Fabrication and Study of the Optical Properties of 3D Photonic Crystals and 2D Graded Photonic Super-Crystals (open access)

Fabrication and Study of the Optical Properties of 3D Photonic Crystals and 2D Graded Photonic Super-Crystals

In this dissertation, I am presenting my research on the fabrication and simulation of the optical properties of 3D photonic crystals and 2D graded photonic super-crystals. The 3D photonic crystals were fabricated using holographic lithography with a single, custom-built reflective optical element (ROE) and single exposure from a visible light laser. Fully 3D photonic crystals with 4-fold, 5- fold, and 6-fold symmetries were fabricated using the flexible, 3D printed ROE. In addition, novel 2D graded photonic super-crystals were fabricated using a spatial light modulator (SLM) in a 4f setup for pixel-by-pixel phase engineering. The SLM was used to control the phase and intensity of sets of beams to fabricate the 2D photonic crystals in a single exposure. The 2D photonic crystals integrate super-cell periodicities with 4-fold, 5-fold, and 6-fold symmetries and a graded fill fraction. The simulations of the 2D graded photonic super-crystals show extraordinary properties such as full photonic band gaps and cavity modes with Q-factors of ~106. This research could help in the development of organic light emitting diodes, high-efficiency solar cells, and other devices.
Date: December 2018
Creator: Lowell, David
System: The UNT Digital Library
Complex Numbers in Quantum Theory (open access)

Complex Numbers in Quantum Theory

In 1927, Nobel prize winning physicist, E. Schrodinger, in correspondence with Ehrenfest, wrote the following about the new theory: “What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. Psi is surely fundamentally a real function.” This seemingly simple issue remains unexplained almost ninety years later. In this dissertation I elucidate the physical and theoretical origins of the complex requirement. I identify a freedom/constraint situation encountered by vectors when, employed in accordance with adopted quantum representational methodology, and representing angular momentum states in particular. Complex vectors, quite simply, provide more available adjustable variables than do real vectors. The additional variables relax the constraint situation allowing the theory’s representational program to carry through. This complex number issue, which lies at the deepest foundations of the theory, has implications for important issues located higher in the theory. For example, any unification of the classical and quantum accounts of the settled order of nature, will rest squarely on our ability to account for the introduction of the imaginary unit.
Date: August 2015
Creator: Maynard, Glenn
System: The UNT Digital Library
Cooperation-induced Criticality in Neural Networks (open access)

Cooperation-induced Criticality in Neural Networks

The human brain is considered to be the most complex and powerful information-processing device in the known universe. The fundamental concepts behind the physics of complex systems motivate scientists to investigate the human brain as a collective property emerging from the interaction of thousand agents. In this dissertation, I investigate the emergence of cooperation-induced properties in a system of interacting units. I demonstrate that the neural network of my research generates a series of properties such as avalanche distribution in size and duration coinciding with the experimental results on neural networks both in vivo and in vitro. Focusing attention on temporal complexity and fractal index of the system, I discuss how to define an order parameter and phase transition. Criticality is assumed to correspond to the emergence of temporal complexity, interpreted as a manifestation of non-Poisson renewal dynamics. In addition, I study the transmission of information between two networks to confirm the criticality and discuss how the network topology changes over time in the light of Hebbian learning.
Date: August 2013
Creator: Zare, Marzieh
System: The UNT Digital Library
Effects of Quantum Coherence and Interference (open access)

Effects of Quantum Coherence and Interference

Quantum coherence and interference (QCI) is a phenomenon that takes place in all multi-level atomic systems interacting with multiple lasers. In this work QCI is used to create several interesting effects like lasing without inversion (LWI), controlling group velocity of light to extreme values, controlling the direction of propagation through non-linear phase matching condition and for controlling the correlations in field fluctuations. Controlling group velocity of light is very interesting because of many novel applications it can offer. One of the unsolved problems in this area is to achieve a slow and fast light which can be tuned continuously as a function of frequency. We describe a method for creation of tunable slow and fast light by controlling intensity of incident laser fields using QCI effects. Lasers are not new to the modern world but an extreme ultra-violet laser or a x-ray laser is definitely one of the most desirable technologies today. Using QCI, we describe a method to realize lasing at high frequencies by creating lasing without inversion. Role of QCI in creating correlations and anti-correlations, which are generated by vacuum fluctuations, in a three level lambda system coupled to two strong fields is discussed.
Date: August 2013
Creator: Davuluri, Subrahmanya Bhima Sankar
System: The UNT Digital Library