Application of High Entropy Alloys in Stent Implants (open access)

Application of High Entropy Alloys in Stent Implants

High entropy alloys (HEAs) are alloys with five or more principal elements. Due to these distinct concept of alloying, the HEA exhibits unique and superior properties. The outstanding properties of HEA includes higher strength/hardness, superior wear resistance, high temperature stability, higher fatigue life, good corrosion and oxidation resistance. Such characteristics of HEA has been significant interest leading to researches on these emerging field. Even though many works are done to understand the characteristic of these HEAs, very few works are made on how the HEAs can be applied for commercial uses. This work discusses the application of High entropy alloys in biomedical applications. The coronary heart disease, the leading cause of death in the United States kills more than 350,000 persons/year and it costs $108.9 billion for the nation each year in spite of significant advancements in medical care and public awareness. A cardiovascular disease affects heart or blood vessels (arteries, veins and capillaries) or both by blocking the blood flow. As a surgical interventions, stent implants are deployed to cure or ameliorate the disease. However, the high failure rate of stents has lead researchers to give special attention towards analyzing stent structure, materials and characteristics. Many works related to …
Date: May 2017
Creator: Alagarsamy, Karthik
System: The UNT Digital Library
Heat Transfer in Low Dimensional Materials Characterized by Micro/Nanoscae Thermometry (open access)

Heat Transfer in Low Dimensional Materials Characterized by Micro/Nanoscae Thermometry

In this study, the thermal properties of low dimensional materials such as graphene and boron nitride nanotube were investigated. As one of important heat transfer characteristics, interfacial thermal resistance (ITR) between graphene and Cu film was estimated by both experiment and simulation. In order to characterize ITR, the micropipette sensing technique was utilized to measure the temperature profile of suspended and supported graphene on Cu substrate that is subjected to continuous wave laser as a point source heating. By measuring the temperature of suspended graphene, the intrinsic thermal conductivity of suspended graphene was measured and it was used for estimating interfacial thermal resistance between graphene and Cu film. For simulation, a finite element method and a multiparameter fitting technique were employed to find the best fitting parameters. A temperature profile on a supported graphene on Cu was extracted by a finite element method using COMSOL Multiphysics. Then, a multiparameter fitting method using MATLAB software was used to find the best fitting parameters and ITR by comparing experimentally measured temperature profile with simulation one. In order to understand thermal transport between graphene and Cu substrate with different interface distances, the phonon density of states at the interface between graphene and Cu …
Date: August 2018
Creator: Jeong, Jae Young
System: The UNT Digital Library
Programmable Mechanical Metamaterials with Negative Poisson's Ratio and Negative Thermal Expansion (open access)

Programmable Mechanical Metamaterials with Negative Poisson's Ratio and Negative Thermal Expansion

Programmable matter is a material whose properties can be programmed to achieve particular shapes or mechanical properties upon command. This is an essential technique that could one day lead to morphing aircraft and ground vehicles. Metamaterials are the rationally designed artificial materials whose properties are not observed in nature. Their properties are typically controlled by geometry rather than chemical compositions. Combining metamaterials with a programmable function will create a new area in the intelligent material design. The objective of this study is to design and demonstrate a tunable metamaterial and to investigate its thermo-mechanical behavior. An integrated approach to the metamaterial design was used with analytical modeling, numerical simulation, and experimental demonstration. The dynamic thermo-mechanical analysis was used to measure base materials' modulus and thermal expansion coefficient as a function of temperature. CPS, the unit cell of the metamaterial, is composed of circular holes and slits. By decomposing kinematic rotation of the arm and elastic deformation of a bi-material hinge, thermo-mechanical constitutive models of CPS were developed and it was extended to 3D polyhedral structures for securing isotropic properties. Finite element based numerical simulations of CPS and polyhedral models were conducted for comparison with the analytical model. 3D printing of …
Date: December 2016
Creator: Heo, Hyeonu
System: The UNT Digital Library
Dissimilar Joining of Al (AA2139) – Mg (WE43) Alloys Using Friction Stir Welding (open access)

Dissimilar Joining of Al (AA2139) – Mg (WE43) Alloys Using Friction Stir Welding

This research demonstrates the use of friction stir welding (FSW) to join dissimilar (Al-Mg) metal alloys. The main challenges in joining different, dissimilar metal alloys is the formation of brittle intermetallic compounds (IMCs) in the stir zone affecting mechanical properties of joint significantly. In this present study, FSW joining process is used to join aluminum alloy AA2139 and magnesium alloy WE43. The 9.5 mm thick plates of AA2139 and WE43 were friction stir butt welded. Different processing parameters were used to optimize processing parameters. Also, various weldings showed a crack at interface due to formation of IMCs caused by liquation during FSW. A good strength sound weld was obtained using processing parameter of 1200 rev/min rotational speed; 76.2 mm/min traverse speed; 1.5 degree tilt and 0.13 mm offsets towards aluminum. The crack faded away as the tool was offset towards advancing side aluminum. Mostly, the research was focused on developing high strength joint through microstructural control to reduce IMCs thickness in Al-Mg dissimilar weld joint with optimized processing parameter and appropriate tool offset.
Date: December 2016
Creator: Poudel, Amir
System: The UNT Digital Library
Enhanced Coarse-Graining for Multiscale Modeling of Elastomers (open access)

Enhanced Coarse-Graining for Multiscale Modeling of Elastomers

One of the major goal of the researchers is to reduce energy loss including nanoscale to the structural level. For instance, around 65% of fuel energy is lost during the propulsion of the automobiles, where 11% of the loss happens at tires due to rolling friction. Out of that tire loss, 90 to 95% loss happens due to hysteresis of tire materials. This dissertation focuses on multiscale modeling techniques in order to facilitate the discovery new rubber materials. Enhanced coarse-grained models of elastomers (thermoplastic polyurethane elastomer and natural rubber) are constructed from full-atomic models with reasonable repeat units/beads associated with pressure-correction for non-bonded interactions of the beads using inverse Boltzmann method (IBM). Equivalent continuum modeling is performed with volumetric/isochoric loading to predict macroscopic mechanical properties using molecular mechanics (MM) and molecular dynamics (MD). Glass-transition and rate-dependent mechanical properties along with hysteresis loss under uniaxial deformation is predicted with varying composition of the material. A statistical non-Gaussian treatment of a rubber chain is performed and linked with molecular dynamics in order predict hyperelastic material constants without fitting with any experimental data.
Date: December 2016
Creator: Uddin, Md Salah
System: The UNT Digital Library
Modeling of Hexagonal Boron Nitride Filled Bismalemide Polymer Composites for Thermal and Electrical Properties for Electronic Packaging (open access)

Modeling of Hexagonal Boron Nitride Filled Bismalemide Polymer Composites for Thermal and Electrical Properties for Electronic Packaging

Due to the multi-tasking and miniaturization of electronic devices, faster heat transfer is required from the device to avoid the thermal failure. Die-attached polymer adhesives are used to bond the chips in electronic packaging. These adhesives have to hold strong mechanical, thermal, dielectric, and moisture resistant properties. As polymers are insulators, heat conductive particles are inserted in it to enhance the thermal flow with an attention that there would be no electrical conductivity as well as no reduction in dielectric strength. This thesis focuses on the characterization of polymer nanocomposites for thermal and electrical properties with experimental and computational tools. Platelet geometry of hexagonal boron nitride offers highly anisotropic properties. Therefore, their alignment and degree of orientation offers tunable properties in polymer nanocomposites for thermal, electrical, and mechanical properties. This thesis intends to model the anisotropic behavior of thermal and dielectric properties using finite element and molecular dynamics simulations as well as experimental validation.
Date: December 2016
Creator: Uddin, Md Salah
System: The UNT Digital Library
Sustainable Ecofriendly Insulation Foams for Disaster Relief Housing (open access)

Sustainable Ecofriendly Insulation Foams for Disaster Relief Housing

Natural disasters are affecting a significant number of people around the world. Sheltering is the first step in post-disaster activities towards the normalization of the affected people's lives. Temporary housing is being used in these cases until the construction of permanent houses are done. Disposal of temporary housing after use is leading to a significant environmental impact because most of them are filled with thermally insulative polymer foams that do not degrade in a short period. To reduce these problems this work proposes to use foams made with compostable thermoplastic polylactic acid (PLA) and degradable kenaf core as filler materials; these foams are made using CO2 as blowing agent for insulation purposes. Foams with PLA and 5%, 10% and 15% kenaf core were tested. Different properties and their relations were examined using differential scanning calorimetry (DSC), thermal conductivity, mechanical properties, scanning electron microscopy (SEM), x-ray μ-computed tomography (μ-CT) and building energy simulations were done using Energy Plus by NREL. The results show that mechanical properties are reduced with the introduction of kenaf core reinforcement while thermal conductivity display a noticeable improvement.
Date: May 2017
Creator: Chitela, Yuvaraj Reddy
System: The UNT Digital Library
Effectiveness of Fillers for Corrosion Protection of AISI-SAE 1018 Steel in Sea Salt Solution (open access)

Effectiveness of Fillers for Corrosion Protection of AISI-SAE 1018 Steel in Sea Salt Solution

Corrosion represents the single most frequent cause for product replacement or loss of product functionality with a 5% coat to the industrial revenue generation of any country in this dissertation the efficacy of using filled coatings as a protection coating are investigated. Fillers disrupt the polymer-substrate coating interfacial area and lead to poor adhesion. Conflicting benefits of increasing surface hardness and corrosion with long term durability through loss of adhesion to the substrate are investigated. The effects of filler type, filler concentration and exposure to harsh environments such as supercritical carbon dioxide on salt water corrosion are systematically investigated. The constants maintained in the design of experiments were the substrate, AISI-SAE 1018 steel substrate, and the corrosive fluid synthetic sea salt solution (4.2 wt%) and the polymer, Bismaleimide (BMI). Adhesion strength through pull-off, lap shear and shear peel tests were determined. Corrosion using Tafel plots and electrochemical impedance spectroscopy was conducted. Vickers hardness was used to determine mechanical strength of the coatings. SEM and optical microscopy were used to examine dispersion and coating integrity. A comparison of fillers such as alumina, silica, hexagonal boron nitride, and organophilic montmorillonite clay (OMMT) at different concentrations revealed OMMT to be most effective with …
Date: May 2017
Creator: Al-Shenawa, Amaal
System: The UNT Digital Library
Analysis of Sources Affecting Ambient Particulate Matter in Brownsville, Texas (open access)

Analysis of Sources Affecting Ambient Particulate Matter in Brownsville, Texas

Texas is the second largest state in U.S.A. based on geographical area, population and the economy. It is home to several large coastal urban areas with major industries and infrastructure supporting the fossil-fuel based energy sector. Most of the major cities on the state have been impacted by significant air pollution events over the past decade. Studies conducted in the southern coastal region of TX have identified long range transport as a major contributor of particulate matter (PM) pollution along with local emissions. Biomass burns, secondary sulfates and diesel emissions sources are comprise as the dominant mass of PM2.5 have been noted to be formed by the long range transport biomass from Central America. Thus, the primary objective of this study was to identify and quantify local as well as regional sources contributing to the PM pollution in the coastal area of Brownsville located along the Gulf of Mexico. Source apportionment techniques such as principal component analysis (PCA) and positive matrix factorization (PMF) were employed on the air quality monitoring data to identify and quantify local and regional sources affecting this coastal region. As a supplement to the PMF and PCA, conditional probability function (CPF) analysis and potential source contribution …
Date: May 2012
Creator: Diaz Poueriet, Pablo
System: The UNT Digital Library
High-Precision Micropipette Thermal Sensor for Measurement of Thermal Conductivity of Carbon Nanotubes Thin Film (open access)

High-Precision Micropipette Thermal Sensor for Measurement of Thermal Conductivity of Carbon Nanotubes Thin Film

The thesis describes novel glass micropipette thermal sensor fabricated in cost-effective manner and thermal conductivity measurement of carbon nanotubes (CNT) thin film using the developed sensor. Various micrometer-sized sensors, which range from 2 µm to 30 µm, were produced and tested. The capability of the sensor in measuring thermal fluctuation at micro level with an estimated resolution of ±0.002oC is demonstrated. The sensitivity of sensors was recorded from 3.34 to 8.86 µV/oC, which is independent of tip size and dependent on the coating of Nickel. The detailed experimental setup for thermal conductivity measurement of CNT film is discussed and 73.418 W/moC was determined as the thermal conductivity of the CNT film at room temperature.
Date: August 2011
Creator: Shrestha, Ramesh
System: The UNT Digital Library
Energy Usage While Maintaining Thermal Comfort : A Case Study of a UNT Dormitory (open access)

Energy Usage While Maintaining Thermal Comfort : A Case Study of a UNT Dormitory

Campus dormitories for the University of North Texas house over 5500 students per year; each one of them requires certain comfortable living conditions while they live there. There is an inherit amount of money required in order to achieve minimal comfort levels; the cost is mostly natural gas for water and room heating and electricity for cooling, lighting and peripherals. The US Department of Energy has developed several programs to aid in performing energy simulations to help those interested design more cost effective building designs. Energy-10 is such a program that allows users to conduct whole house evaluations by reviewing and altering a few parameters such as building materials, solar heating, energy efficient windows etc. The idea of this project was to recreate a campus dormitory and try to emulate existent energy consumption then try to find ways of lowering that usage while maintaining a high level of personal comfort.
Date: December 2011
Creator: Gambrell, Dusten
System: The UNT Digital Library
Laminar Natural Convection From Isothermal Vertical Cylinders (open access)

Laminar Natural Convection From Isothermal Vertical Cylinders

Laminar natural convection heat transfer from the vertical surface of a cylinder is a classical subject, which has been studied extensively. Furthermore, this subject has generated some recent interest in the literature. In the present investigation, numerical experiments were performed to determine average Nusselt numbers for isothermal vertical cylinders (103 < RaL < 109, 0.5 < L/D <10, and Pr = 0.7) with and without an adiabatic top in a quiescent ambient environment which will allow for plume growth. Results were compared with commonly used correlations and new average Nusselt number correlations are presented. Furthermore, the limit for which the heat transfer results for a vertical flat plate may be used as an approximation for the heat transfer from a vertical cylinder was investigated.
Date: August 2012
Creator: Day, Jerod
System: The UNT Digital Library
Simulation Study of Tremor Suppression and Experiment of Energy Harvesting with Piezoelectric Materials (open access)

Simulation Study of Tremor Suppression and Experiment of Energy Harvesting with Piezoelectric Materials

The objective of this research is to develop a wearable device that could harvest waste mechanical energy of the human hand movement and utilize this energy to suppress wrist tremors. Piezoelectric material is used to measure the hand movement signals, and the signal of wrist tremor is filtered to be utilized to suppress the tremor. In order to conduct the experiment of energy harvesting and tremor suppression, an experimental rig was fabricated. Two types of piezoelectric materials, PVDF (polyvinylidene fluoride) films and MFC (macro fiber composite) films, are used to harvest mechanical energy and used as actuators to suppress hand tremors. However, due to some shortages of the materials, these two types of materials are not used as actuators to suppress the wrist tremors. Thus, we use Matlab Simulink to simulate the tremor suppression with AVC (active vibration control) algorithm.
Date: August 2012
Creator: Ou, Jianqiang
System: The UNT Digital Library
Quantification of Anthropogenic and Natural Sources of Fine Particles in Houston, Texas Using Positive Matrix Factorization (open access)

Quantification of Anthropogenic and Natural Sources of Fine Particles in Houston, Texas Using Positive Matrix Factorization

Texas, due to its geographical area, population, and economy is home to a variety of industrialized areas that have significant air quality problems. These urban areas are affected by elevated levels of fine particulate matter (PM2.5). The primary objective of this study was to identify and quantify local and regional sources of air pollution affecting the city of Houston, Texas. Positive Matrix Factorization (PMF) techniques were applied to observational datasets from two urban air quality monitoring sites in Houston from 2003 through 2008 in order to apportion sources of pollutants affecting the study region. Data from 68 species for Aldine and 91 for Deer Park were collected, evaluated, and revised to create concentration and uncertainty input files for the PMF2 and EPA PMF (PMF3) source apportionment models. A 11-sources solution for Aldine and 10-sources for Deer Park were identified as the optimal solutions with both models. The dominant contributors of fine particulate matter in these sites were found to be biomass burnings (2%-8.9%), secondary sulfates I (21.3%-7.6%) and II (38.8%-22.2%), crustal dust (8.9%-10.9%), industrial activities (10.9%-4.2%), traffic (23.1%-15.6%), secondary nitrates (4.4%-5.5%), fresh (1%-1.6%) and aged(5.1%-4.6%) sea salt and refineries (1.3%-0.6%), representing a strong case to confirm the high influence of …
Date: August 2012
Creator: Peña Sanchez, Carlos Alberto
System: The UNT Digital Library
Piezoelectric-Based Gas Sensors for Harsh Environment Gas Component Monitoring (open access)

Piezoelectric-Based Gas Sensors for Harsh Environment Gas Component Monitoring

In this study, gas sensing systems that are based on piezoelectric smart material and structures are proposed, designed, developed, and tested, which are mainly aimed to address the temperature dependent CO2 gas sensing in a real environment. The state-of-the-art of gas sensing technologies are firstly reviewed and discussed for their pros and cons. The adsorption mechanisms including physisorption and chemisorption are subsequently investigated to characterize and provide solutions to various gas sensors. Particularly, a QCM based gas sensor and a C-axis inclined zigzag ZnO FBAR gas sensor are designed and analyzed for their performance on room temperature CO2 gas sensing, which fall into the scope of physisorption. In contrast, a Langasite (LGS) surface acoustic wave (SAW) based acetone vapor sensor is designed, developed, and tested, which is based on the chemisorption analysis of the LGS substrate. Moreover, solid state gas sensors are characterized and analyzed for chemisorption-based sensitive sensing thin film development, which can be further applied to piezoelectric-based gas sensors (i.e. Ca doped ZnO LGS SAW gas sensors) for performance enhanced CO2 gas sensing. Additionally, an innovative MEMS micro cantilever beam is proposed based on the LGS nanofabrication, which can be potentially applied for gas sensing, when combined with …
Date: August 2019
Creator: Zhang, Chen
System: The UNT Digital Library
Electrodepostion of Iron Oxide on Steel Fiber for Improved Pullout Strength in Concrete (open access)

Electrodepostion of Iron Oxide on Steel Fiber for Improved Pullout Strength in Concrete

Fiber-reinforced concrete (FRC) is nowadays extensively used in civil engineering throughout the world due to the composites of FRC can improve the toughness, flexural strength, tensile strength, and impact strength as well as the failure mode of the concrete. It is an easy crazed material compared to others materials in civil engineering. Concrete, like glass, is brittle, and hence has a low tensile strength and shear capacity. At present, there are different materials that have been employed to reinforce concrete. In our experiment, nanostructures iron oxide was prepared by electrodepostion in an electrolyte containing 0.2 mol/L sodium acetate (CH3COONa), 0.01 mol/L sodium sulfate (Na2SO4) and 0.01 mol/L ammonium ferrous sulfate (NH4)2Fe(SO4)2.6H2O under magnetic stirring. The resulted showed that pristine Fe2O3 particles, Fe2O3 nanorods and nanosheets were synthesized under current intensity of 1, 3, 5 mA, respectively. And the pull-out tests were performed by Autograph AGS-X Series. It is discovering that the load force potential of nanostructure fibers is almost 2 times as strong as the control sample.
Date: August 2014
Creator: Liu, Chuangwei
System: The UNT Digital Library
High-Density Polyethylene/Peanut Shell Biocomposites (open access)

High-Density Polyethylene/Peanut Shell Biocomposites

A recent trend in the development of renewable and biodegradable materials has led to the development of composites from renewal sources such as natural fibers. This agricultural activity generates a large amount of waste in the form of peanut shells. The motivation for this research is based on the utilization of peanut shells as a viable source for the manufacture of biocomposites. High-density polyethylene (HDPE) is a plastic largely used in the industry due to its durability, high strength to density ratio, and thermal stability. This research focuses in the mechanical and thermal properties of HDPE/peanut shell composites of different qualities and compositions. The samples obtained were subjected to dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and mechanical tensile strength tests. TO prepare the samples for analysis, the peanut shells were separated into different mesh sizes and then mixed with HDPE at different concentrations. The results showed that samples with fiber size number 10 exhibited superior strength modulus of 1.65 GPa versus results for HDPE alone at 1.32 GPa. The analysis from the previous experiments helped to determine that the fiber size number 10 at 5%wt. ratio in HDPE provides the most optimal mechanical and thermal results. From tensile …
Date: May 2014
Creator: Londoño Ceballos, Mauricio
System: The UNT Digital Library
The Influence of Surface Roughness and Its Geometry on Dynamic Behavior of Water Droplets (open access)

The Influence of Surface Roughness and Its Geometry on Dynamic Behavior of Water Droplets

In this study the author reports the effects of surface roughness on dynamic behavior of water droplets on different types of rough structures. First, the influence of roughness geometry on the Wenzel/ Cassie-Baxter transition of water droplets on one-tier (solid substrates with Si micropillars) surfaces is studied (Chapter 3). In order to address distinct wetting behaviors of the advancing and receding motions, the author investigates the Wenzel/ Cassie-Baxter transition of water droplets on one-tier surfaces over a wide range of contact line velocities and droplet volumes in both advancing and receding movements. The discussions are strengthened by experimental results. According to the author’s analysis, the advancing contact zone tends to follow the Cassie-Baxter behavior for a wider range of geometric ratios than the receding contact zone. Physical phenomena such as advancing contact line rolling mechanism and the pinning of the receding contact line are introduced to justify distinct transition points of the advancing and receding movements respectively. Based on the analysis provided in Chapter 3, the author experimentally investigates the contact line fluctuations and contact line friction coefficients of water droplets on smooth, one-tier, and two-tier (with carbon nanotubes (CNTs) grown on Si micropillars) surfaces in Chapters 4 and 5. …
Date: December 2014
Creator: Sadeghpour, Nima.
System: The UNT Digital Library
Microchannel Radiator: an Investigation of Microchannel Technology with Applications in Automotive Radiator Heat Exchangers (open access)

Microchannel Radiator: an Investigation of Microchannel Technology with Applications in Automotive Radiator Heat Exchangers

Microchannels have been used in electronics cooling and in air conditioning applications as condensers. Little study has been made in the application of microchannels in automotive heat exchangers, particularly the radiator. The presented research captures the need for the design improvement of radiator heat exchangers in heavy-duty vehicles in order to reduce aerodynamic drag and improve fuel economy. A method for analyzing an existing radiator is set forth including the needed parameters for effective comparisons of alternative designs. An investigation of microchannels was presented and it was determined that microchannels can improve the overall heat transfer of a radiator but this alone will not decrease the dimensions of the radiator. Investigations into improving the air-side heat transfer were considered and an improved fin design was found which allows a reduction in frontal area while maintaining heat transfer. The overall heat transfer of the design was improved from the original design by 7% well as 52% decrease in frontal area but at the cost of 300% increase in auxiliary power. The energy saved by a reduction in frontal area is not substantial enough to justify the increase of auxiliary power. The findings were verified through a computational fluid dynamic model to …
Date: August 2014
Creator: Checketts, Gus Thomas
System: The UNT Digital Library
Electromagnetic Shielding Properties of Iron Oxide Impregnated Kenaf Bast Fiberboard (open access)

Electromagnetic Shielding Properties of Iron Oxide Impregnated Kenaf Bast Fiberboard

The electromagnetic shielding effectiveness of kenaf bast fiber based composites with different iron oxide impregnation levels was investigated. The kenaf fibers were retted to remove the lignin and extractives from the pores in fibers, and then magnetized. Using the unsaturated polyester and the magnetized fibers, kenaf fiber based composites were manufactured by compression molding process. The transmission energies of the composites were characterized when the composite samples were exposed under the irradiation of electromagnetic (EM) wave with a changing frequency from 9 GHz to 11 GHz. Using the scanning electron microscope (SEM), the iron oxide nanoparticles were observed on the surfaces and inside the micropore structures of single fibers. The SEM images revealed that the composite’s EM shielding effectiveness was increased due to the adhesion of the iron oxide crystals to the kenaf fiber surfaces. As the Fe content increased from 0% to 6.8%, 15.9% and 18.0%, the total surface free energy of kenaf fibers with magnetizing treat increased from 44.77 mJ/m2 to 46.07 mJ/m2, 48.78 mJ/m2 and 53.02 mJ/m2, respectively, while the modulus of elasticity (MOE) reduced from 2,875 MPa to 2,729 MPa, 2,487 MPa and 2,007 MPa, respectively. Meanwhile, the shielding effectiveness was increased from 30-50% to 60-70%, …
Date: December 2014
Creator: Ding, Zhiguang
System: The UNT Digital Library
Sensitivity and Uncertainty Analysis of Occupancy-related Parameters in Energy Modeling of Unt Zero Energy Lab (open access)

Sensitivity and Uncertainty Analysis of Occupancy-related Parameters in Energy Modeling of Unt Zero Energy Lab

The study focuses on the sensitivity and uncertainty analysis of occupancy-related parameters using Energyplus modeling method. The model is based on a real building Zero Energy Lab in Discovery Park, at University of North Texas. Four categories of parameters are analyzed: heating/cooling setpoint, lighting, equipment and occupancy. Influence coefficient (IC) is applied in the sensitivity study, in order to compare the impact of individual parameter on the overall building energy consumption. The study is conducted under Texas weather file as well as North Dakota weather file in order to find weather’s influence of sensitivity. Probabilistic collocation method (PCM) is utilized for uncertainty analysis, with an aim of predicting future energy consumption based on history or reference data set. From the study, it is found that cooling setpoint has the largest influence on overall energy consumption in both Texas and North Dakota, and occupancy number has the least influence. The analysis also indicates schedule’s influence on energy consumption. PCM is able to accurately predict future energy consumption with limited calculation, and has great advantage over Monte Carlo Method. The polynomial equations are generated in both 3-order and 6-order, and the 6-order equation is proved to have a better result, which is …
Date: August 2013
Creator: Xiong, Guangyuan
System: The UNT Digital Library
Effect of Dispersed Particles and Branching on the Performance of a Medium Temperature Thermal Energy Storage System (open access)

Effect of Dispersed Particles and Branching on the Performance of a Medium Temperature Thermal Energy Storage System

The main objective of my thesis is to develop a numerical model for small-scale thermal energy storage system and to see the effect of dispersing nano-particles and using fractal-like branching heat exchanger in phase change material for our proposed thermal energy storage system. The associated research problems investigated for phase change material (PCM) are the low thermal conductivity and low rate of heat transfer from heat transfer fluid to PCM in thermal energy storage system. In this study an intensive study is carried out to find the best material for thermal storage and later on as a high conductive nano-particle graphite is used to enhance the effective thermal conductivity of the mixed materials. As a thermal storage material molten solar Salt (60% NaNO3+40%KNO3) has been selected, after that detailed numerical modeling of the proposed design has been done using MATLAB algorithm and following the fixed grid enthalpy method. The model is based on the numerical computation of 1-D finite difference method using explicit scheme. The second part of the study is based on enhancing the heat transfer performance by introducing the concept of fractal network or branching heat exchanger. Results from the numerical computation have been utilized for the comparison …
Date: August 2013
Creator: Hasib, A. M. M. Golam
System: The UNT Digital Library
A Performance Analysis of Solar Chimney Passive Ventilation System in the Unt Zero Energy Lab (open access)

A Performance Analysis of Solar Chimney Passive Ventilation System in the Unt Zero Energy Lab

The purpose of this investigation is to find out suitability of the solar chimney natural ventilation system in a Zero Energy Lab located at the University of North Texas campus, to figure out performance of the solar chimney. Reduction in the heating and ventilation and air conditioning energy consumption of the house has been also analyzed. The parameters which are considered for investigation are volumetric flow rate of outlet of chimney, the absorber wall temperature and glass wall temperatures. ANSYS FLUENT 14.0 has been employed for the 3-D modeling of the solar chimney. The dimensions of the solar chimney are 14’2” X 7’4” X 6’11”. The flow inside solar chimney is found to be laminar and the simulation results show that maximum outlet volumetric flow rate of about 0.12m3/s or 432 cfm is possible from chimney. The experimental velocity of chimney was found to be 0.21 m/s. Density Boussinesq approximation is considered for the modeling. Velocity and temperature sensors have been installed at inlet and outlet of the chimney in order to validate the modeling results. It is found that based on simulated volumetric flow rate that cooling load of 9.29 kwh can be saved and fan power of 7.85 …
Date: August 2013
Creator: Talele, Suraj H.
System: The UNT Digital Library
Optimization of Superhydrophobic Surfaces to Maintain Continuous Dropwise Condensation (open access)

Optimization of Superhydrophobic Surfaces to Maintain Continuous Dropwise Condensation

In the past decade, the condensation on superhydrophobic surfaces has been investigated abundantly to achieve dropwise condensation. There is not a specific approach in choosing the size of the roughness of the superhydrophobic surfaces and it was mostly selected arbitrarily to investigate the behavior of condensates on these surfaces. In this research, we are optimizing the size of the roughness of the superhydrophobic surface in order to achieve dropwise condensation. By minimizing the resistances toward the transition of the tails of droplets from the cavities of the roughness to the top of the roughness, the size of the roughness is optimized. It is shown that by decreasing the size of the roughness of the superhydrophobic surface, the resistances toward the transition of the tails of droplets from Wenzel state to Cassie state decrease and consequently dropwise condensation becomes more likely.
Date: May 2014
Creator: Vandadi, Aref
System: The UNT Digital Library