Location Estimation and Geo-Correlated Information Trends (open access)

Location Estimation and Geo-Correlated Information Trends

A tremendous amount of information is being shared every day on social media sites such as Facebook, Twitter or Google+. However, only a small portion of users provide their location information, which can be helpful in targeted advertising and many other services. Current methods in location estimation using social relationships consider social friendship as a simple binary relationship. However, social closeness between users and structure of friends have strong implications on geographic distances. In the first task, we introduce new measures to evaluate the social closeness between users and structure of friends. Then we propose models that use them for location estimation. Compared with the models which take the friend relation as a binary feature, social closeness can help identify which friend of a user is more important and friend structure can help to determine significance level of locations, thus improving the accuracy of the location estimation models. A confidence iteration method is further introduced to improve estimation accuracy and overcome the problem of scarce location information. We evaluate our methods on two different datasets, Twitter and Gowalla. The results show that our model can improve the estimation accuracy by 5% - 20% compared with state-of-the-art friend-based models. In the …
Date: December 2017
Creator: Liu, Zhi
System: The UNT Digital Library
Evaluation of Call Mobility on Network Productivity in Long Term Evolution Advanced (LTE-A) Femtocells (open access)

Evaluation of Call Mobility on Network Productivity in Long Term Evolution Advanced (LTE-A) Femtocells

The demand for higher data rates for indoor and cell-edge users led to evolution of small cells. LTE femtocells, one of the small cell categories, are low-power low-cost mobile base stations, which are deployed within the coverage area of the traditional macro base station. The cross-tier and co-tier interferences occur only when the macrocell and femtocell share the same frequency channels. Open access (OSG), closed access (CSG), and hybrid access are the three existing access-control methods that decide users' connectivity to the femtocell access point (FAP). We define a network performance function, network productivity, to measure the traffic that is carried successfully. In this dissertation, we evaluate call mobility in LTE integrated network and determine optimized network productivity with variable call arrival rate in given LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given call blocking vector. The solution to the optimization is maximum network productivity and call arrival rates for all cells. In the second scenario, we evaluate call mobility in LTE integrated network with increasing femtocells and maximize network productivity with variable femtocells distribution per macrocell with constant call arrival rate in uniform LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given …
Date: December 2017
Creator: Sawant, Uttara
System: The UNT Digital Library
The Influence of Social Network Graph Structure on Disease Dynamics in a Simulated Environment (open access)

The Influence of Social Network Graph Structure on Disease Dynamics in a Simulated Environment

The fight against epidemics/pandemics is one of man versus nature. Technological advances have not only improved existing methods for monitoring and controlling disease outbreaks, but have also provided new means for investigation, such as through modeling and simulation. This dissertation explores the relationship between social structure and disease dynamics. Social structures are modeled as graphs, and outbreaks are simulated based on a well-recognized standard, the susceptible-infectious-removed (SIR) paradigm. Two independent, but related, studies are presented. The first involves measuring the severity of outbreaks as social network parameters are altered. The second study investigates the efficacy of various vaccination policies based on social structure. Three disease-related centrality measures are introduced, contact, transmission, and spread centrality, which are related to previously established centrality measures degree, betweenness, and closeness, respectively. The results of experiments presented in this dissertation indicate that reducing the neighborhood size along with outside-of-neighborhood contacts diminishes the severity of disease outbreaks. Vaccination strategies can effectively reduce these parameters. Additionally, vaccination policies that target individuals with high centrality are generally shown to be slightly more effective than a random vaccination policy. These results combined with past and future studies will assist public health officials in their effort to minimize the effects …
Date: December 2010
Creator: Johnson, Tina V.
System: The UNT Digital Library
A Framework for Analyzing and Optimizing Regional Bio-Emergency Response Plans (open access)

A Framework for Analyzing and Optimizing Regional Bio-Emergency Response Plans

The presence of naturally occurring and man-made public health threats necessitate the design and implementation of mitigation strategies, such that adequate response is provided in a timely manner. Since multiple variables, such as geographic properties, resource constraints, and government mandated time-frames must be accounted for, computational methods provide the necessary tools to develop contingency response plans while respecting underlying data and assumptions. A typical response scenario involves the placement of points of dispensing (PODs) in the affected geographic region to supply vaccines or medications to the general public. Computational tools aid in the analysis of such response plans, as well as in the strategic placement of PODs, such that feasible response scenarios can be developed. Due to the sensitivity of bio-emergency response plans, geographic information, such as POD locations, must be kept confidential. The generation of synthetic geographic regions allows for the development of emergency response plans on non-sensitive data, as well as for the study of the effects of single geographic parameters. Further, synthetic representations of geographic regions allow for results to be published and evaluated by the scientific community. This dissertation presents methodology for the analysis of bio-emergency response plans, methods for plan optimization, as well as methodology …
Date: December 2010
Creator: Schneider, Tamara
System: The UNT Digital Library
Measuring Vital Signs Using Smart Phones (open access)

Measuring Vital Signs Using Smart Phones

Smart phones today have become increasingly popular with the general public for its diverse abilities like navigation, social networking, and multimedia facilities to name a few. These phones are equipped with high end processors, high resolution cameras, built-in sensors like accelerometer, orientation-sensor, light-sensor, and much more. According to comScore survey, 25.3% of US adults use smart phones in their daily lives. Motivated by the capability of smart phones and their extensive usage, I focused on utilizing them for bio-medical applications. In this thesis, I present a new application for a smart phone to quantify the vital signs such as heart rate, respiratory rate and blood pressure with the help of its built-in sensors. Using the camera and a microphone, I have shown how the blood pressure and heart rate can be determined for a subject. People sometimes encounter minor situations like fainting or fatal accidents like car crash at unexpected times and places. It would be useful to have a device which can measure all vital signs in such an event. The second part of this thesis demonstrates a new mode of communication for next generation 9-1-1 calls. In this new architecture, the call-taker will be able to control the …
Date: December 2010
Creator: Chandrasekaran, Vikram
System: The UNT Digital Library
Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks (open access)

Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

This dissertation investigates data reduction strategies from a signal processing perspective in centralized detection and estimation applications. First, it considers a deterministic source observed by a network of sensors and develops an analytical strategy for ranking sensor transmissions based on the magnitude of their test statistics. The benefit of the proposed strategy is that the decision to transmit or not to transmit observations to the fusion center can be made at the sensor level resulting in significant savings in transmission costs. A sensor network based on target tracking application is simulated to demonstrate the benefits of the proposed strategy over the unconstrained energy approach. Second, it considers the detection of random signals in noisy measurements and evaluates the performance of eigenvalue-based signal detectors. Due to their computational simplicity, robustness and performance, these detectors have recently received a lot of attention. When the observed random signal is correlated, several researchers claim that the performance of eigenvalue-based detectors exceeds that of the classical energy detector. However, such claims fail to consider the fact that when the signal is correlated, the optimal detector is the estimator-correlator and not the energy detector. In this dissertation, through theoretical analyses and Monte Carlo simulations, eigenvalue-based detectors …
Date: December 2013
Creator: Ayeh, Eric
System: The UNT Digital Library
Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics (open access)

Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics

Epidemiologists rely on human interaction networks for determining states and dynamics of disease propagations in populations. However, such networks are empirical snapshots of the past. It will greatly benefit if human interaction networks are statistically predicted and dynamically created while an epidemic is in progress. We develop an application framework for the generation of human interaction networks and running epidemiological processes utilizing research on human mobility patterns and agent-based modeling. The interaction networks are dynamically constructed by incorporating different types of Random Walks and human rules of engagements. We explore the characteristics of the created network and compare them with the known theoretical and empirical graphs. The dependencies of epidemic dynamics and their outcomes on patterns and parameters of human motion and motives are encountered and presented through this research. This work specifically describes how the types and parameters of random walks define properties of generated graphs. We show that some configurations of the system of agents in random walk can produce network topologies with properties similar to small-world networks. Our goal is to find sets of mobility patterns that lead to empirical-like networks. The possibility of phase transitions in the graphs due to changes in the parameterization of agent …
Date: December 2016
Creator: Kolgushev, Oleg
System: The UNT Digital Library
Real Time Assessment of a Video Game Player's State of Mind Using Off-the-Shelf Electroencephalography (open access)

Real Time Assessment of a Video Game Player's State of Mind Using Off-the-Shelf Electroencephalography

The focus of this research is on the development of a real time application that uses a low cost EEG headset to measure a player's state of mind while they play a video game. Using data collected using the Emotiv EPOC headset, various EEG processing techniques are tested to find ways of measuring a person's engagement and arousal levels. The ability to measure a person's engagement and arousal levels provide an opportunity to develop a model that monitor a person's flow while playing video games. Identifying when certain events occur, like when the player dies, will make it easier to identify when a player has left a state of flow. The real time application Brainwave captures data from the wireless Emotiv EPOC headset. Brainwave converts the raw EEG data into more meaningful brainwave band frequencies. Utilizing the brainwave frequencies the program trains multiple machine learning algorithms with data designed to identify when the player dies. Brainwave runs while the player plays through a video gaming monitoring their engagement and arousal levels for changes that cause the player to leave a state of flow. Brainwave reports to researchers and developers when the player dies along with the identification of the players …
Date: December 2016
Creator: McMahan, Timothy
System: The UNT Digital Library
Infusing Automatic Question Generation with Natural Language Understanding (open access)

Infusing Automatic Question Generation with Natural Language Understanding

Automatically generating questions from text for educational purposes is an active research area in natural language processing. The automatic question generation system accompanying this dissertation is MARGE, which is a recursive acronym for: MARGE automatically reads generates and evaluates. MARGE generates questions from both individual sentences and the passage as a whole, and is the first question generation system to successfully generate meaningful questions from textual units larger than a sentence. Prior work in automatic question generation from text treats a sentence as a string of constituents to be rearranged into as many questions as allowed by English grammar rules. Consequently, such systems overgenerate and create mainly trivial questions. Further, none of these systems to date has been able to automatically determine which questions are meaningful and which are trivial. This is because the research focus has been placed on NLG at the expense of NLU. In contrast, the work presented here infuses the questions generation process with natural language understanding. From the input text, MARGE creates a meaning analysis representation for each sentence in a passage via the DeconStructure algorithm presented in this work. Questions are generated from sentence meaning analysis representations using templates. The generated questions are automatically …
Date: December 2016
Creator: Mazidi, Karen
System: The UNT Digital Library
Simulink Based Modeling of a Multi Global Navigation Satellite System (open access)

Simulink Based Modeling of a Multi Global Navigation Satellite System

The objective of this thesis is to design a model for a multi global navigation satellite system using Simulink. It explains a design procedure which includes the models for transmitter and receiver for two different navigation systems. To overcome the problem, where less number of satellites are visible to determine location degrades the performance of any positioning system significantly, this research has done to make use of multi GNSS satellite signals in one navigation receiver.
Date: December 2016
Creator: Mukka, Nagaraju
System: The UNT Digital Library
An Accelerometer-based Gesture Recognition System for a Tactical Communications Application (open access)

An Accelerometer-based Gesture Recognition System for a Tactical Communications Application

In modern society, computers are primarily interacted with via keyboards, touch screens, voice recognition, video analysis, and many others. For certain applications, these methods may be the most efficient interface. However, there are applications that we can conceive where a more natural interface could be convenient and connect humans and computers in a more intuitive and natural way. These applications are gesture recognition systems and range from the interpretation of sign language by a computer to virtual reality control. This Thesis proposes a gesture recognition system that primarily uses accelerometers to capture gestures from a tactical communications application. A segmentation algorithm is developed based on the accelerometer energy to segment these gestures from an input sequence. Using signal processing and machine learning techniques, the segments are reduced to mathematical features and classified with support vector machines. Experimental results show that the system achieves an overall gesture recognition accuracy of 98.9%. Additional methods, such as non-gesture recognition/suppression, are also proposed and tested.
Date: December 2015
Creator: Tidwell, Robert S., Jr.
System: The UNT Digital Library
Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos (open access)

Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

There are several types of disorders that affect our colon’s ability to function properly such as colorectal cancer, ulcerative colitis, diverticulitis, irritable bowel syndrome and colonic polyps. Automatic detection of these diseases would inform the endoscopist of possible sub-optimal inspection during the colonoscopy procedure as well as save time during post-procedure evaluation. But existing systems only detects few of those disorders like colonic polyps. In this dissertation, we address the automatic detection of another important disorder called ulcerative colitis. We propose a novel texture feature extraction technique to detect the severity of ulcerative colitis in block, image, and video levels. We also enhance the current informative frame filtering methods by detecting water and bubble frames using our proposed technique. Our feature extraction algorithm based on accumulation of pixel value difference provides better accuracy at faster speed than the existing methods making it highly suitable for real-time systems. We also propose a hybrid approach in which our feature method is combined with existing feature method(s) to provide even better accuracy. We extend the block and image level detection method to video level severity score calculation and shot segmentation. Also, the proposed novel feature extraction method can detect water and bubble frames …
Date: December 2015
Creator: Dahal, Ashok
System: The UNT Digital Library
Ontology Based Security Threat Assessment and Mitigation for Cloud Systems (open access)

Ontology Based Security Threat Assessment and Mitigation for Cloud Systems

A malicious actor often relies on security vulnerabilities of IT systems to launch a cyber attack. Most cloud services are supported by an orchestration of large and complex systems which are prone to vulnerabilities, making threat assessment very challenging. In this research, I developed formal and practical ontology-based techniques that enable automated evaluation of a cloud system's security threats. I use an architecture for threat assessment of cloud systems that leverages a dynamically generated ontology knowledge base. I created an ontology model and represented the components of a cloud system. These ontologies are designed for a set of domains that covers some cloud's aspects and information technology products' cyber threat data. The inputs to our architecture are the configurations of cloud assets and components specification (which encompass the desired assessment procedures) and the outputs are actionable threat assessment results. The focus of this work is on ways of enumerating, assessing, and mitigating emerging cyber security threats. A research toolkit system has been developed to evaluate our architecture. We expect our techniques to be leveraged by any cloud provider or consumer in closing the gap of identifying and remediating known or impending security threats facing their cloud's assets.
Date: December 2018
Creator: Kamongi, Patrick
System: The UNT Digital Library
Toward Supporting Fine-Grained, Structured, Meaningful and Engaging Feedback in Educational Applications (open access)

Toward Supporting Fine-Grained, Structured, Meaningful and Engaging Feedback in Educational Applications

Recent advancements in machine learning have started to put their mark on educational technology. Technology is evolving fast and, as people adopt it, schools and universities must also keep up (nearly 70% of primary and secondary schools in the UK are now using tablets for various purposes). As these numbers are likely going to follow the same increasing trend, it is imperative for schools to adapt and benefit from the advantages offered by technology: real-time processing of data, availability of different resources through connectivity, efficiency, and many others. To this end, this work contributes to the growth of educational technology by developing several algorithms and models that are meant to ease several tasks for the instructors, engage students in deep discussions and ultimately, increase their learning gains. First, a novel, fine-grained knowledge representation is introduced that splits phrases into their constituent propositions that are both meaningful and minimal. An automated extraction algorithm of the propositions is also introduced. Compared with other fine-grained representations, the extraction model does not require any human labor after it is trained, while the results show considerable improvement over two meaningful baselines. Second, a proposition alignment model is created that relies on even finer-grained units of …
Date: December 2018
Creator: Bulgarov, Florin Adrian
System: The UNT Digital Library
Design and Analysis of Novel Verifiable Voting Schemes (open access)

Design and Analysis of Novel Verifiable Voting Schemes

Free and fair elections are the basis for democracy, but conducting elections is not an easy task. Different groups of people are trying to influence the outcome of the election in their favor using the range of methods, from campaigning for a particular candidate to well-financed lobbying. Often the stakes are too high, and the methods are illegal. Two main properties of any voting scheme are the privacy of a voter’s choice and the integrity of the tally. Unfortunately, they are mutually exclusive. Integrity requires making elections transparent and auditable, but at the same time, we must preserve a voter’s privacy. It is always a trade-off between these two requirements. Current voting schemes favor privacy over auditability, and thus, they are vulnerable to voting fraud. I propose two novel voting systems that can achieve both privacy and verifiability. The first protocol is based on cryptographical primitives to ensure the integrity of the final tally and privacy of the voter. The second protocol is a simple paper-based voting scheme that achieves almost the same level of security without usage of cryptography.
Date: December 2013
Creator: Yestekov, Yernat
System: The UNT Digital Library
Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics (open access)

Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics

The spread of infectious diseases has been a public concern throughout human history. Historic recorded data has reported the severity of infectious disease epidemics in different ages. Ancient Greek physician Hippocrates was the first to analyze the correlation between diseases and their environment. Nowadays, health authorities are in charge of planning strategies that guarantee the welfare of citizens. The simulation of contagion scenarios contributes to the understanding of the epidemic behavior of diseases. Computational models facilitate the study of epidemics by integrating disease and population data to the simulation. The use of detailed demographic and geographic characteristics allows researchers to construct complex models that better resemble reality and the integration of these attributes permits us to understand the rules of interaction. The interaction of individuals with similar characteristics forms synthetic structures that depict clusters of interaction. The synthetic environments facilitate the study of the spread of infectious diseases in diverse scenarios. The characteristics of the population and the disease concurrently affect the local and global epidemic progression. Every cluster’ epidemic behavior constitutes the global epidemic for a clustered population. By understanding the correlation between structured populations and the spread of a disease, current dissertation research makes possible to identify risk …
Date: December 2013
Creator: Gomez-Lopez, Iris Nelly
System: The UNT Digital Library
Boosting for Learning From Imbalanced, Multiclass Data Sets (open access)

Boosting for Learning From Imbalanced, Multiclass Data Sets

In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared …
Date: December 2013
Creator: Abouelenien, Mohamed
System: The UNT Digital Library
Improving Software Quality through Syntax and Semantics Verification of Requirements Models (open access)

Improving Software Quality through Syntax and Semantics Verification of Requirements Models

Software defects can frequently be traced to poorly-specified requirements. Many software teams manage their requirements using tools such as checklists and databases, which lack a formal semantic mapping to system behavior. Such a mapping can be especially helpful for safety-critical systems. Another limitation of many requirements analysis methods is that much of the analysis must still be done manually. We propose techniques that automate portions of the requirements analysis process, as well as clarify the syntax and semantics of requirements models using a variety of methods, including machine learning tools and our own tool, VeriCCM. The machine learning tools used help us identify potential model elements and verify their correctness. VeriCCM, a formalized extension of the causal component model (CCM), uses formal methods to ensure that requirements are well-formed, as well as providing the beginnings of a full formal semantics. We also explore the use of statecharts to identify potential abnormal behaviors from a given set of requirements. At each stage, we perform empirical studies to evaluate the effectiveness of our proposed approaches.
Date: December 2018
Creator: Gaither, Danielle
System: The UNT Digital Library
Towards a Unilateral Sensing System for Detecting Person-to-Person Contacts (open access)

Towards a Unilateral Sensing System for Detecting Person-to-Person Contacts

The contact patterns among individuals can significantly affect the progress of an infectious outbreak within a population. Gathering data about these interaction and mixing patterns is essential to assess computational modeling of infectious diseases. Various self-report approaches have been designed in different studies to collect data about contact rates and patterns. Recent advances in sensing technology provide researchers with a bilateral automated data collection devices to facilitate contact gathering overcoming the disadvantages of previous approaches. In this study, a novel unilateral wearable sensing architecture has been proposed that overcome the limitations of the bi-lateral sensing. Our unilateral wearable sensing system gather contact data using hybrid sensor arrays embedded in wearable shirt. A smartphone application has been used to transfer the collected sensors data to the cloud and apply deep learning model to estimate the number of human contacts and the results are stored in the cloud database. The deep learning model has been developed on the hand labelled data over multiple experiments. This model has been tested and evaluated, and these results were reported in the study. Sensitivity analysis has been performed to choose the most suitable image resolution and format for the model to estimate contacts and to analyze …
Date: December 2018
Creator: Amara, Pavan Kumar
System: The UNT Digital Library

A Performance and Security Analysis of Elliptic Curve Cryptography Based Real-Time Media Encryption

Access: Use of this item is restricted to the UNT Community
This dissertation emphasizes the security aspects of real-time media. The problems of existing real-time media protections are identified in this research, and viable solutions are proposed. First, the security of real-time media depends on the Secure Real-time Transport Protocol (SRTP) mechanism. We identified drawbacks of the existing SRTP Systems, which use symmetric key encryption schemes, which can be exploited by attackers. Elliptic Curve Cryptography (ECC), an asymmetric key cryptography scheme, is proposed to resolve these problems. Second, the ECC encryption scheme is based on elliptic curves. This dissertation explores the weaknesses of a widely used elliptic curve in terms of security and describes a more secure elliptic curve suitable for real-time media protection. Eighteen elliptic curves had been tested in a real-time video transmission system, and fifteen elliptic curves had been tested in a real-time audio transmission system. Based on the performance, X9.62 standard 256-bit prime curve, NIST-recommended 256-bit prime curves, and Brainpool 256-bit prime curves were found to be suitable for real-time audio encryption. Again, X9.62 standard 256-bit prime and 272-bit binary curves, and NIST-recommended 256-bit prime curves were found to be suitable for real-time video encryption.The weaknesses of NIST-recommended elliptic curves are discussed and a more secure new …
Date: December 2019
Creator: Sen, Nilanjan
System: The UNT Digital Library
Online Construction of Android Application Test Suites (open access)

Online Construction of Android Application Test Suites

Mobile applications play an important role in the dissemination of computing and information resources. They are often used in domains such as mobile banking, e-commerce, and health monitoring. Cost-effective testing techniques in these domains are critical. This dissertation contributes novel techniques for automatic construction of mobile application test suites. In particular, this work provides solutions that focus on the prohibitively large number of possible event sequences that must be sampled in GUI-based mobile applications. This work makes three major contributions: (1) an automated GUI testing tool, Autodroid, that implements a novel online approach to automatic construction of Android application test suites (2) probabilistic and combinatorial-based algorithms that systematically sample the input space of Android applications to generate test suites with GUI/context events and (3) empirical studies to evaluate the cost-effectiveness of our techniques on real-world Android applications. Our experiments show that our techniques achieve better code coverage and event coverage compared to random test generation. We demonstrate that our techniques are useful for automatic construction of Android application test suites in the absence of source code and preexisting abstract models of an Application Under Test (AUT). The insights derived from our empirical studies provide guidance to researchers and practitioners involved …
Date: December 2017
Creator: Adamo, David T., Jr.
System: The UNT Digital Library
Detection and Classification of Heart Sounds Using a Heart-Mobile Interface (open access)

Detection and Classification of Heart Sounds Using a Heart-Mobile Interface

An early detection of heart disease can save lives, caution individuals and also help to determine the type of treatment to be given to the patients. The first test of diagnosing a heart disease is through auscultation - listening to the heart sounds. The interpretation of heart sounds is subjective and requires a professional skill to identify the abnormalities in these sounds. A medical practitioner uses a stethoscope to perform an initial screening by listening for irregular sounds from the patient's chest. Later, echocardiography and electrocardiography tests are taken for further diagnosis. However, these tests are expensive and require specialized technicians to operate. A simple and economical way is vital for monitoring in homecare or rural hospitals and urban clinics. This dissertation is focused on developing a patient-centered device for initial screening of the heart sounds that is both low cost and can be used by the users on themselves, and later share the readings with the healthcare providers. An innovative mobile health service platform is created for analyzing and classifying heart sounds. Certain properties of heart sounds have to be evaluated to identify the irregularities such as the number of heart beats and gallops, intensity, frequency, and duration. Since …
Date: December 2016
Creator: Thiyagaraja, Shanti
System: The UNT Digital Library
Privacy Preserving EEG-based Authentication Using Perceptual Hashing (open access)

Privacy Preserving EEG-based Authentication Using Perceptual Hashing

The use of electroencephalogram (EEG), an electrophysiological monitoring method for recording the brain activity, for authentication has attracted the interest of researchers for over a decade. In addition to exhibiting qualities of biometric-based authentication, they are revocable, impossible to mimic, and resistant to coercion attacks. However, EEG signals carry a wealth of information about an individual and can reveal private information about the user. This brings significant privacy issues to EEG-based authentication systems as they have access to raw EEG signals. This thesis proposes a privacy-preserving EEG-based authentication system that preserves the privacy of the user by not revealing the raw EEG signals while allowing the system to authenticate the user accurately. In that, perceptual hashing is utilized and instead of raw EEG signals, their perceptually hashed values are used in the authentication process. In addition to describing the authentication process, algorithms to compute the perceptual hash are developed based on two feature extraction techniques. Experimental results show that an authentication system using perceptual hashing can achieve performance comparable to a system that has access to raw EEG signals if enough EEG channels are used in the process. This thesis also presents a security analysis to show that perceptual hashing …
Date: December 2016
Creator: Koppikar, Samir Dilip
System: The UNT Digital Library
Indoor Localization Using Magnetic Fields (open access)

Indoor Localization Using Magnetic Fields

Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth’s magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth’s magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth’s field with the ferromagnetic fields is described thereby explaining the causes of the …
Date: December 2011
Creator: Pathapati Subbu, Kalyan Sasidhar
System: The UNT Digital Library