Level Curves of the Angle Function of a Positive Definite Symmetric Matrix (open access)

Level Curves of the Angle Function of a Positive Definite Symmetric Matrix

Given a real N by N matrix A, write p(A) for the maximum angle by which A rotates any unit vector. Suppose that A and B are positive definite symmetric (PDS) N by N matrices. Then their Jordan product {A, B} := AB + BA is also symmetric, but not necessarily positive definite. If p(A) + p(B) is obtuse, then there exists a special orthogonal matrix S such that {A, SBS^(-1)} is indefinite. Of course, if A and B commute, then {A, B} is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that p(A) + p(B) is obtuse, what is the minimal p(S) such that {A, SBS^(-1)} indefinite? In this dissertation we will describe the level curves of the angle function mapping a unit vector x to the angle between x and Ax for a 3 by 3 PDS matrix A, and discuss their interaction with those of a second such matrix.
Date: December 2009
Creator: Bajracharya, Neeraj
System: The UNT Digital Library
Borel Determinacy and Metamathematics (open access)

Borel Determinacy and Metamathematics

Borel determinacy states that if G(T;X) is a game and X is Borel, then G(T;X) is determined. Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic type (N1 many power sets of ω). Friedman proved in 1971 that these sets are necessary by showing that the Axiom of Replacement is necessary for any proof of Borel Determinacy. To prove this, Friedman produces a model of ZC and a Borel set of Turing degrees that neither contains nor omits a cone; so by another theorem of Martin, Borel Determinacy is not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of Turing degrees that neither contains nor omits a cone; and finally, the Friedman result.
Date: December 2001
Creator: Bryant, Ross
System: The UNT Digital Library
Applications in Fixed Point Theory (open access)

Applications in Fixed Point Theory

Banach's contraction principle is probably one of the most important theorems in fixed point theory. It has been used to develop much of the rest of fixed point theory. Another key result in the field is a theorem due to Browder, Göhde, and Kirk involving Hilbert spaces and nonexpansive mappings. Several applications of Banach's contraction principle are made. Some of these applications involve obtaining new metrics on a space, forcing a continuous map to have a fixed point, and using conditions on the boundary of a closed ball in a Banach space to obtain a fixed point. Finally, a development of the theorem due to Browder et al. is given with Hilbert spaces replaced by uniformly convex Banach spaces.
Date: December 2005
Creator: Farmer, Matthew Ray
System: The UNT Digital Library

Hamiltonian cycles in subset and subspace graphs.

Access: Use of this item is restricted to the UNT Community
In this dissertation we study the Hamiltonicity and the uniform-Hamiltonicity of subset graphs, subspace graphs, and their associated bipartite graphs. In 1995 paper "The Subset-Subspace Analogy," Kung states the subspace version of a conjecture. The study of this problem led to a more general class of graphs. Inspired by Clark and Ismail's work in the 1996 paper "Binomial and Q-Binomial Coefficient Inequalities Related to the Hamiltonicity of the Kneser Graphs and their Q-Analogues," we defined subset graphs, subspace graphs, and their associated bipartite graphs. The main emphasis of this dissertation is to describe those graphs and study their Hamiltonicity. The results on subset graphs are presented in Chapter 3, on subset bipartite graphs in Chapter 4, and on subspace graphs and subspace bipartite graphs in Chapter 5. We conclude the dissertation by suggesting some generalizations of our results concerning the panciclicity of the graphs.
Date: December 2004
Creator: Ghenciu, Petre Ion
System: The UNT Digital Library
Compact Operators and the Schrödinger Equation (open access)

Compact Operators and the Schrödinger Equation

In this thesis I look at the theory of compact operators in a general Hilbert space, as well as the inverse of the Hamiltonian operator in the specific case of L2[a,b]. I show that this inverse is a compact, positive, and bounded linear operator. Also the eigenfunctions of this operator form a basis for the space of continuous functions as a subspace of L2[a,b]. A numerical method is proposed to solve for these eigenfunctions when the Hamiltonian is considered as an operator on Rn. The paper finishes with a discussion of examples of Schrödinger equations and the solutions.
Date: December 2006
Creator: Kazemi, Parimah
System: The UNT Digital Library

Quantization Dimension for Probability Definitions

Access: Use of this item is restricted to the UNT Community
The term quantization refers to the process of estimating a given probability by a discrete probability supported on a finite set. The quantization dimension Dr of a probability is related to the asymptotic rate at which the expected distance (raised to the rth power) to the support of the quantized version of the probability goes to zero as the size of the support is allowed to go to infinity. This assumes that the quantized versions are in some sense ``optimal'' in that the expected distances have been minimized. In this dissertation we give a short history of quantization as well as some basic facts. We develop a generalized framework for the quantization dimension which extends the current theory to include a wider range of probability measures. This framework uses the theory of thermodynamic formalism and the multifractal spectrum. It is shown that at least in certain cases the quantization dimension function D(r)=Dr is a transform of the temperature function b(q), which is already known to be the Legendre transform of the multifractal spectrum f(a). Hence, these ideas are all closely related and it would be expected that progress in one area could lead to new results in another. It would …
Date: December 2001
Creator: Lindsay, Larry J.
System: The UNT Digital Library

Topological uniqueness results for the special linear and other classical Lie Algebras.

Access: Use of this item is restricted to the UNT Community
Suppose L is a complete separable metric topological group (ring, field, etc.). L is topologically unique if the Polish topology on L is uniquely determined by its underlying algebraic structure. More specifically, L is topologically unique if an algebraic isomorphism of L with any other complete separable metric topological group (ring, field, etc.) induces a topological isomorphism. A local field is a locally compact topological field with non-discrete topology. The only local fields (up to isomorphism) are the real, complex, and p-adic numbers, finite extensions of the p-adic numbers, and fields of formal power series over finite fields. We establish the topological uniqueness of the special linear Lie algebras over local fields other than the complex numbers (for which this result is not true) in the context of complete separable metric Lie rings. Along the way the topological uniqueness of all local fields other than the field of complex numbers is established, which is derived as a corollary to more general principles which can be applied to a larger class of topological fields. Lastly, also in the context of complete separable metric Lie rings, the topological uniqueness of the special linear Lie algebra over the real division algebra of quaternions, …
Date: December 2001
Creator: Rees, Michael K.
System: The UNT Digital Library
Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions (open access)

Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions

Hill and Monticino (1998) introduced a constructive method for generating random probability measures with a prescribed mean or distribution on the mean. The method involves sequentially generating an array of barycenters that uniquely defines a probability measure. This work analyzes statistical properties of the measures generated by sequential barycenter array constructions. Specifically, this work addresses how changing the base measures of the construction affects the statististics of measures generated by the SBA construction. A relationship between statistics associated with a finite level version of the SBA construction and the full construction is developed. Monte Carlo statistical experiments are used to simulate the effect changing base measures has on the statistics associated with the finite level construction.
Date: December 2002
Creator: Valdes, LeRoy I.
System: The UNT Digital Library