Analysis of a Cotton Gene Cluster for the Antifungal Protein Osmotin (open access)

Analysis of a Cotton Gene Cluster for the Antifungal Protein Osmotin

Three overlapping genomic clones covering 29.0 kilobases of cotton DNA were found to encompass a cluster of two presumptive osmotin genes (OSMI and OSMII) and two osmotin pseudogenes (OSMIII and OSMIV). A segment of 16,007 basepairs of genomic DNA was sequenced from the overlapping genomic clones (GenBank Accessions AY303690 and AF304007). The two cotton osmotin genes were found to have open reading frames of 729 basepairs without any introns, and would encode presumptive osmotin preproteins of 242 amino acids. The open reading frames of the genes are identical in sequence to two corresponding cDNA clones (GenBank Accessions AF192271 and AY301283). The two cDNA inserts are almost full-length, since one lacks codons for the four N-terminal amino acids, and the other cDNA insert lacks the coding region for the 34 N-terminal amino acids. The cotton osmotin preproteins can be identified as PR5 proteins from their similarities to the deduced amino acid sequences of other plant osmotin PR5 preproteins. The preproteins would have N-terminal signal sequences of 24 amino acids, and the mature 24 kilodalton isoforms would likely be targeted for extracellular secretion. Prospective promoter elements, including two ethylene response elements, implicated as being positive regulatory elements in the expression of a …
Date: December 2003
Creator: Wilkinson, Jeffery Roland
System: The UNT Digital Library
Analysis of the Expression Profiles of Two Isoforms of the Antifungal Protein Osmotin from Gossypium hirsutum (open access)

Analysis of the Expression Profiles of Two Isoforms of the Antifungal Protein Osmotin from Gossypium hirsutum

The expression of two cotton osmotin genes was evaluated in terms of the mRNA and protein expression patterns in response to chemical inducers such as ethylene, hydrogen peroxide, and sodium chloride. Reverse transcriptase-polymerase chain reactions (RT-PCR) indicated that osmotin mRNAs are expressed constitutively in root tissues of cotton plants, and that they are rapidly induced in leaf and stem tissues upon ethylene treatment. Real time RT-PCR indicated that osmotin transcript levels were induced 2 to 4 h after treatment with ethephon. The osmotin mRNA levels appear to increase 12 h after treatment, decrease, and then increase again. The osmotin protein expression patterns were analyzed in Western blot analyses using an anti-osmotin antibody preparation. A 24-KDa protein band was detected from cotton plants treated with the inducers. The 24-KDa osmotin proteins were induced 4 h after treatment with ethephon, while down-regulated 96 h after treatment. Multiple osmotin isoforms were observed to be induced in cotton plants upon treatment with ethephon by two-dimensional gel electrophoresis. One goal of this dissertation research was to genetically engineer two cotton osmotin genes to routinely overproduce their antifungal proteins in transgenic Arabidopsis and cotton plants as a natural defense against fungal infections, using co-cultivation with Agrobacterium …
Date: May 2007
Creator: Spradling, Kimberly Diane
System: The UNT Digital Library
Applications of Molecular Genetics to Human Identity. (open access)

Applications of Molecular Genetics to Human Identity.

The primary objectives of this project were: 1. to develop improved methods for extraction of DNA from human skeletal remains, 2. to improve STR profiling success of low-copy DNA samples by employing whole genome amplification to amplify the total pool of DNA prior to STR analysis, and 3. to improve STR profiling success of damaged DNA templates by using DNA repair enzymes to reduce the number/severity of lesions that interfere with STR profiling. The data from this study support the following conclusions. Inhibitory compounds must be removed prior to enzymatic amplification; either during bone section pretreatment or by the DNA extraction method. Overall, bleach outperformed UV as a pretreatment and DNA extraction using silica outperformed microconcentration and organic extraction. DNA repair with PreCR™ A outperformed both whole genome amplification and repair with PreCR™ T6. Superior DNA extraction results were achieved using the A6 PMB columns (20 ml capacity column with 6 layers of type A glass fiber filter), and DNA repair with PreCR™ A led to an overall improvement in profile quality in most cases, although whole genome amplification was unsuccessful. Rapid, robust DNA isolation, successful amplification of loci from the sample-derived DNA pool, and an elimination of DNA damage …
Date: December 2008
Creator: Turnbough, Meredith A.
System: The UNT Digital Library
Bacterial Cyanide Assimilation: Pterin Cofactor and Enzymatic Requirements for Substrate Oxidation (open access)

Bacterial Cyanide Assimilation: Pterin Cofactor and Enzymatic Requirements for Substrate Oxidation

Utilization of cyanide as the sole nitrogen source by Pseudomonas fluorescens NCIMB 11764 (Pf11764) occurs via oxidative conversion to carbon dioxide and ammonia, the latter satisfying the nitrogen requirement. Substrate attack is initiated oxygenolytically by an enzyme referred to as cyanide oxygenase (CNO), which exhibits properties of a pterin-dependent hydroxylase. The pterin requirement for Pf11764 CNO was satisfied by supplying either the fully (tetrahydro) or partially (dihydro) reduced forms of various pterin compounds at catalytic concentrations (0.5 µM). These compounds included, for example, biopterin, monapterin and neopterin, all of which were also identified in cell extracts. A related CNO-mediated mechanism of cyanide utilization was identified in cyanide-degrading P. putida BCN3. This conclusion was based on (i) the recovery of CO2 and NH3 as enzymatic reaction products, (ii) the dependency of substrate conversion on both O2 and NADH, and (iiii) utilization of cyanide, O2 and NADH in a 1:1:1 reaction stoichiometry. In contrast to findings reported for Pf11764, it was not possible to demonstrate a need for exogenously added pterin as a cofactor for the PpBCN3 enzyme system. However, results which showed that cells of PpBCN3 contained approximately seven times the amount of pterin as Pf11764 (of which a significant portion …
Date: May 2004
Creator: Dolghih, Elena
System: The UNT Digital Library

Callus Development and Organogenesis in Cultured Explants of Cowpea (Vigna unguiculata (L.) Walp

Access: Use of this item is restricted to the UNT Community
Cowpea, Vigna unguiculata (L.) Walp is an excellent source of protein, vitamins and minerals and a major food crop many parts of Africa. Optimal production levels are hampered by insect pests and diseases. Biotechnological techniques such as tissue culture and genetic engineering can aid in the development of varieties with resistance to insect pests and diseases. The objective of this study was to investigate conditions necessary for the development of a reproducible tissue culture system that can be applied to regenerate transformed cells from culture. The in vitro manipulation of cowpea using Murashige and Skoog (MS) medium, auxins and cytokinins resulted in the formation of callus and rhizogenesis. Calli that were formed were separated into six classes based on color and texture. Yellowish friable callus, yellowish compact, soft yellowish callus and green and white were composed of largely vacuolated cells and were non-regenerative. Friable green callus was the most prevalent callus type and could form of roots in some hormone combinations. Green spots were formed on hard compact green callus. The green spots became nodular, forming root primordia and ultimately giving rise to roots. None of the six calli types gave rise to the formation of shoots. Embryogenic callus was …
Date: December 2004
Creator: Omwenga, George Isanda
System: The UNT Digital Library

Characterization of cDNA and Genomic Clones for a Palmitoyl-acyl Carrier Protein Thioesterase and an Osmotin-Like PR5 Protein in Gossypium Hirsutum.

Access: Use of this item is restricted to the UNT Community
Putative cotton cDNA clones and cognate genomic clones for a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE) and an osmotin-like pathogenesis-related 5 (PR5) protein have been isolated and characterized. PATE is a class B fatty acid thioesterase with specificity for saturated long-chain fatty acids such as palmitate, and is implicated as a key enzyme to be targeted for regulation of fatty acid synthesis in order to alter cotton seed oil profiles. A nearly full-length 1.7-kb cDNA clone was isolated using a hybridization probe derived from an Arabidopsis PATE cDNA clone designated TE 3-2. A 17-kb genomic segment encompassing the PATE gene was also isolated, which has six exons and five introns with high sequence identity with other FatB cDNA/gene sequences. The deduced PATE preprotein amino acid sequence of 413 residues has putative signal sequences for targeting to the chloroplast stroma. PR5 proteins called osmotins are made in response to fungal pathogen stress or osmotic stress (water deprivation or salt exposure). Osmotins may actually form pores in fungal membranes, leading to osmotic rupture and destruction of the fungal cells. A cotton osmotin-like PR5 cDNA insert of 1,052 base-pairs was isolated and shown to encode a preprotein of 242 amino acids and is …
Date: May 2002
Creator: Yoder, David W.
System: The UNT Digital Library

Characterization of Infection Arrest Mutants of Medicago Truncatula and Genetic Mapping of Their Respective Genes.

Access: Use of this item is restricted to the UNT Community
In response to compatible rhizobia, leguminous plants develop unique plant organs, root nodules, in which rhizobia fix nitrogen into ammonia. During nodule invasion, the rhizobia gain access to newly divided cells, the nodule primordia, in the root inner cortex through plant-derived cellulose tubes called infection threads. Infection threads begin in curled root hairs and bring rhizobia into the root crossing several cell layers in the process. Ultimately the rhizobia are deposited within nodule primordium cells through a process resembling endocytosis. Plant host mechanisms underlying the formation and regulation of the invasion process are not understood. To identify and clone plant genes required for nodule invasion, recent efforts have focused on Medicago truncatula. In a collaborative effort the nodulation defect in the lin (lumpy infections) mutant was characterized. From an EMS-mutagenized population of M. truncatula, two non-allelic mutants nip (numerous infections with polyphenolics) and sli (sluggish infections) were identified with defects in nodule invasion. Infection threads were found to proliferate abnormally in the nip mutant nodules with only very rare deposition of rhizobia within plant host cells. nip nodules were found to accumulate polyphenolic compounds, indicative of a host defense response. Interestingly, nip was also found to have defective lateral root …
Date: May 2005
Creator: Veereshlingam, Harita
System: The UNT Digital Library

Characterization of Moraxella bovis Aspartate Transcarbamoylase

Access: Use of this item is restricted to the UNT Community
Aspartate transcarbamoylase (ATCase) catalyzes the first committed step in the pyrimidine biosynthetic pathway. Bacterial ATCases have been divided into three classes, class A, B, and C, based on their molecular weight, holoenzyme architecture, and enzyme kinetics. Moraxella bovis is a fastidious organism, the etiologic agent of infectious bovine keratoconjunctivitis (IBK). The M. bovis ATCase was purified and characterized for the first time. It is a class A enzyme with a molecular mass of 480 to 520 kDa. It has a pH optimum of 9.5 and is stable at high temperatures. The ATCase holoenzyme is inhibited by CTP > ATP > UTP. The Km for aspartate is 1.8 mM and the Vmax 1.04 µmol per min, where the Km for carbamoylphosphate is 1.05 mM and the Vmax 1.74 µmol per min.
Date: December 2001
Creator: Hooshdaran, Sahar
System: The UNT Digital Library
Construction of a  Pseudomonas aeruginosa Dihydroorotase Mutant and the Discovery of a Novel Link between Pyrimidine Biosynthetic Intermediates and the Ability to Produce Virulence Factors (open access)

Construction of a Pseudomonas aeruginosa Dihydroorotase Mutant and the Discovery of a Novel Link between Pyrimidine Biosynthetic Intermediates and the Ability to Produce Virulence Factors

The ability to synthesize pyrimidine nucleotides is essential for most organisms. Pyrimidines are required for RNA and DNA synthesis, as well as cell wall synthesis and the metabolism of certain carbohydrates. Recent findings, however, indicate that the pyrimidine biosynthetic pathway and its intermediates maybe more important for bacterial metabolism than originally thought. Maksimova et al., 1994, reported that a P. putida M, pyrimidine auxotroph in the third step of the pathway, dihydroorotase (DHOase), failed to produce the siderophore pyoverdin. We created a PAO1 DHOase pyrimidine auxotroph to determine if this was also true for P. aeruginosa. Creation of this mutant was a two-step process, as P. aeruginosa has two pyrC genes (pyrC and pyrC2), both of which encode active DHOase enzymes. The pyrC gene was inactivated by gene replacement with a truncated form of the gene. Next, the pyrC2 gene was insertionally inactivated with the aacC1 gentamicin resistance gene, isolated from pCGMW. The resulting pyrimidine auxotroph produced significantly less pyoverdin than did the wild type. In addition, the mutant produced 40% less of the phenazine antibiotic, pyocyanin, than did the wild type. As both of these compounds have been reported to be vital to the virulence response of P. aeruginosa, …
Date: August 2003
Creator: Brichta, Dayna Michelle
System: The UNT Digital Library

Cyanide Assimilation in Pseudomonas Fluorescens: Characterization of Cyanide Oxygenase as a Pterin-Dependent Multicomponent Enzyme Complex

Access: Use of this item is restricted to the UNT Community
Cyanide utilization in Pseudomonas fluorescens NCIMB 11764 occurs via oxidative conversion to carbon dioxide and ammonia, the latter satisfying the nitrogen requirement. Substrate attack is initiated by an enzyme referred to as cyanide oxygenase (CNO), previously shown to require components in both high (H) (>30 kDa) and low (L) (<10 kDa) molecular weight cell fractions. In this study, tetrahydrobiopterin (H4biopterin) was identified as a cofactor in fraction L, thus making CNO appear as a pterin- dependent hydroxylase. CNO was purified 150-fold (specific activity 0.9 U/mg) and quantitatively converted cyanide to formate and ammonia as reaction products. When coupled with formate dehydrogenase, the complete enzymatic system for cyanide oxidation to carbon dioxide and ammonia was reconstituted. CNO was found to be an aggregate of known enzymes that included NADH oxidase (Nox), NADH peroxidase (Npx), cyanide dihydratase (CynD) and carbonic anhydrase (CA). A complex multi-step reaction mechanism is proposed in which Nox generates hydrogen peroxide which in turn is utilized by Npx to catalyze the oxygenation of cyanide to formamide accompanied by the consumption of one and two molar equivalents of oxygen and NADH, respectively. The further hydrolysis of formamide to ammonia and formate is thought to be mediated by CynD. The …
Date: May 2004
Creator: Fernandez, Ruby
System: The UNT Digital Library
Development of a Real-time Pcr Assay for the Detection of Campylobacter Jejuni and Campylobacter Coli. (open access)

Development of a Real-time Pcr Assay for the Detection of Campylobacter Jejuni and Campylobacter Coli.

Campylobacter organisms are the most commonly reported bacterial causes of foodborne infection in the world, with Campylobacter jejuni and Campylobacter coli responsible for over 99% of reported infections. Traditionally, Campylobacter species detection is an arduous process, requiring a special incubation environment as well as specific growth media for an extended growth period. The development of a rapid and reliable diagnostic tool for the detection of Campylobacter species would be a valuable aid to the medical diagnostic decision process, especially to rule out Campylobacter infection during the enteric pre-surgical time period. Improved patient outcomes would result if this rapid assay could reduce the number of enteric surgeries. Assays performed during this dissertation project have demonstrated that both SYBR® green and hydrolysis probe assays targeting an 84 nucleotide portion of cadF, a fibronectin-binding gene of Campylobacter jejuni and Campylobacter coli, were able to detect from 101 to 108 copies of organism from stool specimens, did not detect nonspecific targets, and exhibited a coefficient of variation (CV) of 1.1% or less. Analytical validation of sensitivity, specificity and precision, successfully performed in these studies, warrants additional clinical validation of these assays.
Date: May 2009
Creator: Lewis, Sally
System: The UNT Digital Library
Dna Profiling of Captive Roseate Spoonbill (Ajaia Ajaja) Populations As a Mechanism of Determining Lineage in Colonial Nesting Birds. (open access)

Dna Profiling of Captive Roseate Spoonbill (Ajaia Ajaja) Populations As a Mechanism of Determining Lineage in Colonial Nesting Birds.

Roseate spoonbills are colonial nesting birds with breeding grounds extending from the United States Gulf coast to the pampas of Argentina. The U.S. population suffered a severe bottleneck from 1890 to 1920. The population's recovery was slow and partially credited to migrations from Mexican rookeries, but a gene pool reduction would be expected. Five polymorphic Spoonbill autosomal short tandem repeat (STR) loci [three (GAT)n, one (AAAG)n and one (GT)n] and one Z/W-linked microsatellite exhibiting sex-specific dimorphism were isolated and characterized. The Z/W-linked STR locus accurately confirmed the sex of each bird. Allelic profiles for 51 spoonbills obtained from Dallas (Texas), Fort Worth (Texas) and Sedgwick County (Kansas) zoos revealed a non-continuous distribution of allele frequencies, consistent with the effects of a population bottleneck. Allelic frequencies also differed significantly between the isolated zoo populations. Although extra-pair copulations were suspected and difficult to document, zoos commonly used observational studies of mating pairs to determine familial relationships among adults and offspring. STR parentage analysis of recorded family relationships excluded one or both parents in 10/25 cases studied and it was further possible to identify alternative likely parents in each case. Mistaken familial relationships quickly lead to the loss of genetic variability in captive …
Date: May 2002
Creator: Sawyer, Gregory M.
System: The UNT Digital Library
Evaluation of Zinc Toxicity Using Neuronal Networks on Microelectrode Arrays: Response Quantification and Entry Pathway Analysis (open access)

Evaluation of Zinc Toxicity Using Neuronal Networks on Microelectrode Arrays: Response Quantification and Entry Pathway Analysis

Murine neuronal networks, derived from embryonic frontal cortex (FC) tissue grown on microelectrode arrays, were used to investigate zinc toxicity at concentrations ranging from 20 to 2000 mM total zinc acetate added to the culture medium. Continual multi-channel recording of spontaneous action potential generation allowed a quantitative analysis of the temporal evolution of network spike activity generation at specific zinc acetate concentrations. Cultures responded with immediate concentration-dependent excitation lasting from 5 to 50 min, consisting of increased spiking and enhanced, coordinated bursting. This was followed by irreversible activity decay. The time to 50% and 90% activity loss was concentration dependent, highly reproducible, and formed linear functions in log-log plots. Network activity loss generally preceded morphological changes. 20% cell swelling was correlated with 50% activity loss. Cultures pretreated with the GABAA receptor antagonists bicuculline (40 mM) and picrotoxin (1 mM) lacked the initial excitation phase. This suggests that zinc-induced excitation may be mediated by interfering with GABA inhibition. Partial network protection was achieved by stopping spontaneous activity with either tetrodotoxin (200 nM) or lidocaine (250 mM). However, recovery was not complete and slow deterioration of network activity continued over 6 hrs. Removal of zinc by early medium changes showed irreversible, catastrophic …
Date: August 2007
Creator: Parviz, Maryam
System: The UNT Digital Library
Expression analysis of the fatty acid desaturase 2-4 and 2-3 genes from Gossypium hirsutum in transformed yeast cells and transgenic Arabidopsis plants. (open access)

Expression analysis of the fatty acid desaturase 2-4 and 2-3 genes from Gossypium hirsutum in transformed yeast cells and transgenic Arabidopsis plants.

Fatty acid desaturase 2 (FAD2) enzymes are phosphatidylcholine desaturases occurring as integral membrane proteins in the endoplasmic reticulum membrane and convert monounsaturated oleic acid into polyunsaturated linoleic acid. The major objective of this research was to study the expression and function of two cotton FAD2 genes (the FAD2-3 and FAD2-4 genes) and their possible role in plant sensitivity to environmental stress, since plants may increase the polyunsaturated phospholipids in membranes under environmental stress events, such as low temperature and osmotic stress. Two FAD2 cDNA clones corresponding to the two FAD2 genes have been isolated from a cotton cDNA library, indicating both genes are truly expressed in cotton. Model yeast cells transformed with two cotton FAD2 genes were used to study the chilling sensitivity, ethanol tolerance, and growth rate of yeast cells. The expression patterns of the two FAD2 genes were analyzed by reverse transcription polymerase chain reactions (RT-PCR) and Western blot analyses in cotton plants under different treatment conditions. The coding regions of both FAD2 genes were inserted downstream from the CaMV 35S promoter in the pMDC gateway binary vector system. Five different FAD2/pMDC constructs were transformed into the Arabidopsis fad2 knockout mutant background, and multiple potential transgenic Arabidopsis plant …
Date: August 2008
Creator: Zhang, Daiyuan
System: The UNT Digital Library
Genetic and Cellular Analysis of Anoxia-Induced Cell Cycle Arrest in Caenorhabditis elegans (open access)

Genetic and Cellular Analysis of Anoxia-Induced Cell Cycle Arrest in Caenorhabditis elegans

The soil-nematode Caenorhabditis elegans survives oxygen deprivation (anoxia < 0.001 kPa of O2, 0% O2) by entering into a state of suspended animation during which cell cycle progression at interphase, prophase and metaphase stage of mitosis is arrested. I conducted cell biological characterization of embryos exposed to various anoxia exposure times, to demonstrate the requirement and functional role of spindle checkpoint gene san-1 during brief anoxia exposure. I conducted a synthetic lethal screen, which has identified genetic interactions between san-1, other spindle checkpoint genes, and the kinetochore gene hcp-1. Furthermore, I investigated the genetic and cellular mechanisms involved in anoxia-induced prophase arrest, a hallmark of which includes chromosomes docked at the nuclear membrane. First, I conducted in vivo analysis of embryos carried inside the uterus of an adult and exposed to anoxic conditions. These studies demonstrated that anoxia exposure prevents nuclear envelope breakdown (NEBD) in prophase blastomeres. Second, I exposed C. elegans embryos to other conditions of mitotic stress such as microtubule depolymerizing agent nocodazole and mitochondrial inhibitor sodium azide. Results demonstrate that NEBD and chromosome docking are independent of microtubule function. Additionally, unlike anoxia, exposure to sodium azide causes chromosome docking in prophase blastomeres but severely affects embryonic viability. …
Date: December 2008
Creator: Hajeri, Vinita A.
System: The UNT Digital Library

Identification and characterization of an incomplete root hair elongation (IRE)-like gene in Medicago truncatula (L.) root nodules.

Access: Use of this item is restricted to the UNT Community
Cloning and molecular characterization of new genes constitutes a useful approach in studying the symbiotic interactions between the model plant Medicago truncatula and Synorhizobium meliloti. Large numbers of expressed sequence tags (ESTs) available for Medicago truncatula, along with numerous cDNA, oligonucleotides, and Affimetrix DNA microarray chips, represent useful tools for gene discovery. In an attempt to identify a new gene that might be involved in the process of nodulation in Medicago truncatula, preliminary data reported by Fedorova et al. (2002), who identified 340 putative gene products or tentative consensus sequences (TCs) expressed only in nodules, was used. This research was focused on TC33166 (TC103185), which has 3 ESTs in the TC, and whose strongest BLASTX hit of TC103185 is the incomplete root hair elongation (IRE) protein kinase-like protein (NP_192429) from Arabidopsis thaliana. The Arabidopsis IRE gene is required for normal root hair growth, and a role in apical growth was suggested (Oyama et al., 2002). Infection thread growth can be looked at as an inward growth of the root hair. Thus, TC103185 was a good candidate for identifying a gene that may be involved in early events of nodulation. MtIRE (GenBank accession AC122727) is organized in 17 exons and 16 …
Date: May 2006
Creator: Pislariu, Catalina Iulia
System: The UNT Digital Library
Impaired virulence factor production in a dihydroorotate dehydrogenase mutant (pyrD) of  Pseudomonas aeruginosa. (open access)

Impaired virulence factor production in a dihydroorotate dehydrogenase mutant (pyrD) of Pseudomonas aeruginosa.

Previous research in our laboratory showed that when knockout mutations were created in the pyrB and pyrC genes of the pyrimidine pathway in Pseudomonas aeruginosa, not only were the resultant mutants auxotrophic for pyrimidines but they were also impaired in virulence factor production. Such a correlation had not been previously reported for P. aeruginosa, a ubiquitous opportunistic pathogen in humans. In an earlier study it was reported that mutants blocked in one of the first three enzymes of the pyrimidine pathway in the non-pathogenic strain P. putida M produced no pyoverdin pigment while mutants blocked in the later steps produced copious amounts of pigment, just like the wild type. This study probed for the same connection between pyrimidine auxotrophy and pigment production applied in P. aeruginosa. To that end a knockout mutation was created in pyrD, the fourth step in the pyrimidine pathway which encodes dihydroorotate dehydrogenase. The resulting mutant required pyrimidines for growth but produced wild type pigment levels. Since the pigment pyoverdin is a siderophore it may also be considered a virulence factor, other virulence factors were quantified in the mutant. These included casein protease, hemolysin, elastase, swimming, swarming and twitching motility, and iron binding capacity. In all …
Date: December 2005
Creator: Ralli, Pooja
System: The UNT Digital Library

Influence of Cholesterol Import on Aspergillus fumigatus Growth and Antifungal Suscepibility

Access: Use of this item is restricted to the UNT Community
Invasive pulmonary aspergillosis is a life-threatening fungal infection commonly observed in immunocompromised patients and has a mortality rate approaching 100% once the disease is disseminated. Aspergillus fumigatus is the most common pathogen. Early diagnosis improves the prognosis but is very difficult since most signs and symptoms are nonspecific. Antifungal therapy, usually based on sterol biosynthesis inhibitors, is also of limited efficacy. In my attempts to discover a diagnostic sterol marker for aspergillosis, I observed that A. fumigatus incorporates large amounts of cholesterol from serum-containing medium. This observation suggested the hypothesis that exogenous cholesterol from the host can be imported by A. fumigatus and used as a substitute for ergosterol in the cell membrane. This proposed mechanism would reduce the efficacy of antifungal drugs that act as sterol biosynthesis inhibitors. Experiments to test this hypothesis were designed to determine the effects of serum-free and serum-containing medium on growth of A. fumigatus in the presence and absence of azole antifungal agents. The results showed a marked increase in growth in the presence of human serum. Cultures in media containing cholesterol but no serum also showed enhanced growth, a result indicating that a non-cholesterol component of serum is not primarily responsible for the …
Date: December 2003
Creator: Hassan, Saad A.
System: The UNT Digital Library
Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene (open access)

Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene

Polyunsaturated fatty acids are major structural components of plant chloroplast and endoplasmic reticulum membranes. Two fatty acid desaturases (designated FAD2 and FAD3) desaturate 75% of the fatty acids in the endoplasmic reticulum. The w -6 fatty acid desaturase (FAD2) may be responsible for cold acclimation response, since polyunsaturated phospholipids are important in helping maintain plant viability at lowered temperatures. To study regulation of FAD2 gene expression in cotton, a FAD2 gene was isolated from two genomic libraries using an Arabidopsis FAD2 hybridization probe and a cotton FAD2 5¢ -flanking region gene-specific probe, respectively. A cotton FAD2 gene was found to be in two overlapping genomic clones by physical mapping and DNA sequencing. The cloned DNA fragments are identical in size to cotton FAD2 genomic DNA fragments shown by genomic blot hybridization. The cotton FAD2 coding region has 1,155 bp with no introns and would encode a putative polypeptide of 384 amino acids. The cotton FAD2 enzyme has a high identity of 75% with other plant FAD2 enzymes. The enzyme has three histidine-rich motifs that are conserved in all plant membrane desaturases. These histidine boxes may be the iron-binding domains for reduction of oxygen during desaturation. To confirm that this FAD2 …
Date: May 2001
Creator: Kongcharoensuntorn, Wisatre
System: The UNT Digital Library

Isolation and Characterization of Polymorphic Loci from the Caribbean Flamingo (Phoenicopterus ruber ruber): New Tools for Wildlife Management

Access: Use of this item is restricted to the UNT Community
Methods to determine genetic diversity and relatedness within populations are essential tools for proper wildlife management. Today the approach of choice is polymerase chain reaction-based microsatellite analysis. Seven new polymorphic loci were isolated from a microsatellite-enriched Caribbean flamingo genomic library and used to characterize survey populations of Caribbean and African greater flamingos. In addition, four of these loci were used to verify parentage relationships within a captive-breeding population of African greater flamingos. Parentage predictions based upon gamekeeper observations of breeding and nesting did not always agree with genetic-based parentage analyses of the nine suggested family groups. Four family groups were supported (groups I, II, III and VI) by there results. However, an analysis of the remaining five suggested groups, with a total of eight offspring/dam and eight offspring/sire suggested relationships, yielded seven exclusions of the suggested dam and six exclusions of the suggested sire. This put the overall suggested dam exclusion rate at 35% and exclusion rate for suggested sires at 29%. Although the keeper observation data for our family groups must be considered a variable of concern at this time, these findings are certainly suggestive that more carefully controlled studies may reveal that flamingos are not monogamous as long …
Date: December 2005
Creator: Preston, E. Lynn
System: The UNT Digital Library
Isolation of a  Pseudomonas aeruginosa Aspartate Transcarbamoylase Mutant and the Investigation of Its Growth Characteristics, Pyrimidine Biosynthetic Enzyme Activities, and Virulence Factor Production (open access)

Isolation of a Pseudomonas aeruginosa Aspartate Transcarbamoylase Mutant and the Investigation of Its Growth Characteristics, Pyrimidine Biosynthetic Enzyme Activities, and Virulence Factor Production

The pyrimidine biosynthetic pathway is an essential pathway for most organisms. Previous research on the pyrimidine pathway in Pseudomonas aeruginosa (PAO1) has shown that a block in the third step of the pathway resulted in both a requirement for exogenous pyrimidines and decreased ability to produce virulence factors. In this work an organism with a mutation in the second step of the pathway, aspartate transcarbamoylase (ATCase), was created. Assays for pyrimidine intermediates, and virulence factors were performed. Results showed that the production of pigments, haemolysin, and rhamnolipids were significantly decreased from PAO1. Elastase and casein protease production were also moderately decreased. In the Caenorhabditis elegans infection model the nematodes fed the ATCase mutant had increased mortality, as compared to nematodes fed wild type bacteria. These findings lend support to the hypothesis that changes in the pyrimidine biosynthetic pathway contribute to the organism's ability to effect pathogenicity.
Date: December 2004
Creator: Hammerstein, Heidi Carol
System: The UNT Digital Library
Linkage of a nitrilase-containing Nit1C gene cluster to cyanide utilization in Pseudomonas fluorescens NCIMB 11764. (open access)

Linkage of a nitrilase-containing Nit1C gene cluster to cyanide utilization in Pseudomonas fluorescens NCIMB 11764.

Pseudomonas fluorescens NCIMB 11764 (Pf11764) is uniquely able to grow on the poison cyanide as its sole nitrogen source. It does so by converting cyanide oxidatively to carbon dioxide and ammonia, the latter being assimilated into cellular molecules. This requires a complex enzymatic machinery that includes nitrilase and oxygenase enzymes the nature of which are not well understood. In the course of a proteomics analysis aimed at achieving a better understanding of the proteins that may be required for cyanide degradation by Pf11764, an unknown protein of 17.8 kDa was detected in cells exposed to cyanide. Analysis of this protein by ESI-coupled mass spectrometry and bioinformatics searches gave evidence of strong homology with a protein (Hyp1) of unknown function (hypothetical) present in the bacterium Photorhabdus luminescens subsp. laumondii TTO1 (locus plu_1232). A search of available microbial genomes revealed a number of Hyp1 orthologs the genes of which are found in a conserved gene cluster known as Nit1C. Independent studies revealed that in addition to Hyp1, Pf11764 possesses a gene (nit) specifying a nitrilase enzyme whose closest homologue is a nitrilase found in Nit1C gene clusters (77% amino acid identity). DNA sequence analysis has further revealed that indeed, hyp1Pf11764 and nitPf11764 …
Date: May 2009
Creator: Ghosh, Pallab
System: The UNT Digital Library
Map-based cloning of the NIP gene in model legume Medicago truncatula. (open access)

Map-based cloning of the NIP gene in model legume Medicago truncatula.

Large amounts of industrial fertilizers are used to maximize crop yields. Unfortunately, they are not completely consumed by plants; consequently, this leads to soil pollution and negative effects on aquatic systems. An alternative to industrial fertilizers can be found in legume plants that provide a nitrogen source that is not harmful for the environment. Legume plants, through their symbiosis with soil bacteria called rhizobia, are able to reduce atmospheric nitrogen into ammonia, a biological nitrogen source. Establishment of the symbiosis requires communication on the molecular level between the two symbionts, which leads to changes on the cellular level and ultimately results in nitrogen-fixing nodule development. Inside the nodules hypoxic environment, the bacterial enzyme nitrogenase reduces atmospheric nitrogen to ammonia. Medicago truncatula is the model legume plant that is used to study symbiosis with mycorrhiza and with the bacteria Sinorhizobium meliloti. The focus of this work is the M. truncatula nodulation mutant nip (numerous infections and polyphenolics). The NIP gene plays a role in the formation and differentiation of nodules, and development of lateral roots. Studying this mutant will contribute knowledge to understanding the plant response to infection and how the invasion by rhizobia is regulated. Previous genetic mapping placed NIP …
Date: May 2007
Creator: Morris, Viktoriya
System: The UNT Digital Library
Microsatellite-based genetic profiling for the management of wild and captive flamingo populations. (open access)

Microsatellite-based genetic profiling for the management of wild and captive flamingo populations.

Flamingo species generate tremendous interest whether they are small captive groups or wild populations numbering in the thousands. Genetic pedigrees are invaluable for maintaining maximum genetic diversity in captive, as well as wild, populations. However, presently there is a general lack of genetic data for flamingo populations. Microsatellites are loci composed of 2-6 base pair tandem repeats, scattered throughout higher eukaryotic genomes, often exhibiting high levels of polymorphism and heterozygosity. These loci are thus important genetic markers for identity, parentage and population studies. Here, six microsatellite loci were isolated from a microsatellite-enriched Caribbean flamingo partial genomic library. Two are compound complex repeats and four are perfect trinucleotide repeats. Each locus was amplified from Caribbean, African greater, Chilean and lesser flamingo genomic DNAs. Heterozygosity frequencies were calculated for Caribbean (range 0.12-0.90) and African greater flamingos (range 0.23-0.94) loci. All six microsatellite loci were found to be in Hardy-Weinberg equilibrium and linkage disequilibrium analyses did not suggest linkage for any pair of two greater flamingo subspecies (African and Caribbean) loci. At least five of the loci also exhibit polymorphism in Chilean and lesser flamingos, but due to small sample numbers, relevant allele/heterozygosity frequency calculations could not be estimated. Nucleotide sequence comparisons of …
Date: December 2005
Creator: Kapil, Richa
System: The UNT Digital Library