Characterization of Moraxella bovis Aspartate Transcarbamoylase

Access: Use of this item is restricted to the UNT Community
Aspartate transcarbamoylase (ATCase) catalyzes the first committed step in the pyrimidine biosynthetic pathway. Bacterial ATCases have been divided into three classes, class A, B, and C, based on their molecular weight, holoenzyme architecture, and enzyme kinetics. Moraxella bovis is a fastidious organism, the etiologic agent of infectious bovine keratoconjunctivitis (IBK). The M. bovis ATCase was purified and characterized for the first time. It is a class A enzyme with a molecular mass of 480 to 520 kDa. It has a pH optimum of 9.5 and is stable at high temperatures. The ATCase holoenzyme is inhibited by CTP > ATP > UTP. The Km for aspartate is 1.8 mM and the Vmax 1.04 µmol per min, where the Km for carbamoylphosphate is 1.05 mM and the Vmax 1.74 µmol per min.
Date: December 2001
Creator: Hooshdaran, Sahar
System: The UNT Digital Library
Pyrimidine Genes in  Pseudomonas Species (open access)

Pyrimidine Genes in Pseudomonas Species

This thesis is a comparative study of gene arrangements in Pseudomonas species, and is organized into three major sections. The first section compares gene arrangements for different pathways in Pseudomonas aeruginosa PAO1 to determine if the gene arrangements are similar to previous studies. It also serves as a reference for pyrimidine gene arrangements in P. aeruginosa. The second part compares the physical, and genetic maps of P. aeruginosa PAO1 with the genome sequence. The final section compares pyrimidine gene arrangements in three species of Pseudomonas. Pyrimidine biosynthesis and salvage genes will be aligned for P. aeruginosa PAO1, P. putida KT2440, and P. syringae DC3000. The whole study will gives insight into gene patterns in Pseudomonas, with a focus on pyrimidine genes.
Date: December 2003
Creator: Roush, Wendy A.
System: The UNT Digital Library
Isolation of a  Pseudomonas aeruginosa Aspartate Transcarbamoylase Mutant and the Investigation of Its Growth Characteristics, Pyrimidine Biosynthetic Enzyme Activities, and Virulence Factor Production (open access)

Isolation of a Pseudomonas aeruginosa Aspartate Transcarbamoylase Mutant and the Investigation of Its Growth Characteristics, Pyrimidine Biosynthetic Enzyme Activities, and Virulence Factor Production

The pyrimidine biosynthetic pathway is an essential pathway for most organisms. Previous research on the pyrimidine pathway in Pseudomonas aeruginosa (PAO1) has shown that a block in the third step of the pathway resulted in both a requirement for exogenous pyrimidines and decreased ability to produce virulence factors. In this work an organism with a mutation in the second step of the pathway, aspartate transcarbamoylase (ATCase), was created. Assays for pyrimidine intermediates, and virulence factors were performed. Results showed that the production of pigments, haemolysin, and rhamnolipids were significantly decreased from PAO1. Elastase and casein protease production were also moderately decreased. In the Caenorhabditis elegans infection model the nematodes fed the ATCase mutant had increased mortality, as compared to nematodes fed wild type bacteria. These findings lend support to the hypothesis that changes in the pyrimidine biosynthetic pathway contribute to the organism's ability to effect pathogenicity.
Date: December 2004
Creator: Hammerstein, Heidi Carol
System: The UNT Digital Library
Physical Map between Marker 8O7 and 146O17 on the Medicago truncatula Linkage Group 1 that Contains the NIP Gene (open access)

Physical Map between Marker 8O7 and 146O17 on the Medicago truncatula Linkage Group 1 that Contains the NIP Gene

The Medicago truncatula NIP gene is located on M. truncatula Linkage Group 1. Informative recombinants showed crossovers that localize the NIP gene between markers 146O17 and 23C16D. Marker 164N9 co-segregates with the NIP gene, and the location of marker 164N9 is between markers 146O17 and 23C16D. Based upon data from the Medicago genome sequencing project, a subset of the model legume Medicago truncatula bacterial artificial chromosomes (BACs) were used to create a physical map on the DNA in this genetic internal. BACs near the potential NIP gene location near marker 164N9 were identified, and used in experiments to predict the physical map by a BAC-by-BAC strategy. Using marker 164N9 as a center point, and chromosome walking outward, the physical map toward markers 146O17 and 23C16D was built. The chromosome walk consisted of a virtual walk, made with existing sequence of BACs from the Medicago genome project, hybridizations to filters containing BAC DNA, and PCR reactions to confirm that predicted overlapping BACs contained DNA that yielded similar PCR products. In addition, the primers which are made for physical mapping via PCR could be good genetic markers helpful in discovering the location of the NIP gene. As a result of efforts repotted …
Date: December 2007
Creator: Lee, Yi-Ching
System: The UNT Digital Library