Nodal Resistance Measurement System

Access: Use of this item is restricted to the UNT Community
The latest development in the measurement techniques has resulted in fast improvements in the instruments used for measurement of various electrical quantities. A common problem in such instruments is the automation of acquiring, retrieving and controlling the measurements by a computer or a laptop. In this study, nodal resistance measurement (NRM) system is developed to solve the above problem. The purpose of this study is to design and develop a compact electronic board, which measures electrical resistance, and a computer or a laptop controls the board. For the above purpose, surface nodal points are created on the surface of the sample electrically conductive material. The nodal points are connected to the compact electronic board and this board is connected to the computer. The user selects the nodal points, from the computer, between which the NRM system measures the electrical resistance and displays the measured quantity on the computer.
Date: May 2005
Creator: Putta, Sunil Kumar
System: The UNT Digital Library

Development of a Hybrid Molecular Ultraviolet Photodetector based on Guanosine Derivatives

Access: Use of this item is restricted to the UNT Community
Modern studies on charge transfer reaction and conductivity measurements of DNA have shown that the electrical behavior of DNA ranges from that of an insulator to that of a wide bandgap semiconductor. Based on this property of DNA, a metal-semiconductor-metal photodetector is fabricated using a self-assembled layer of deoxyguanosine derivative (DNA base) deposited between gold electrodes. The electrodes are lithographically designed on a GaN substrate separated by a distance L (50nm < L < 100nm). This work examines the electrical and optical properties of such wide-bandgap semiconductor based biomaterial systems for their potential application as photodetectors in the UV region wherein most of the biological agents emit. The objective of this study was to develop a biomolecular electronic device and design an experimental setup for electrical and optical characterization of a novel hybrid molecular optoelectronic material system. AFM results proved the usage of Ga-Polar substrate in conjugation with DG molecules to be used as a potential electronic based sensor. A two-terminal nanoscale biomolectronic diode has been fabricated showing efficient rectification ratio. A nanoscale integrated ultraviolet photodetector (of dimensions less than 100 nm) has been fabricated with a cut-off wavelength at ~ 320 nm.
Date: December 2005
Creator: Liddar, Harsheetal
System: The UNT Digital Library

Surface Plasmon Based Nanophotonic Optical Emitters

Access: Use of this item is restricted to the UNT Community
Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the …
Date: December 2005
Creator: Vemuri, Padma Rekha
System: The UNT Digital Library

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Access: Use of this item is restricted to the UNT Community
A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Date: December 2006
Creator: Dhoopati, Swathi
System: The UNT Digital Library
Radio frequency propagation differences through various transmissive materials. (open access)

Radio frequency propagation differences through various transmissive materials.

The purpose of this research was to determine which of the commonly used wireless telecommunication site concealment materials has the least effect on signal potency. The tested materials were Tuff Span® fiberglass panels manufactured by Enduro Composite Systems, Lexan® XL-1 polycarbonate plastic manufactured by GE Corporation and Styrofoam™ polystyrene board manufactured by The Dow Chemical Company. Testing was conducted in a double electrically isolated copper mesh screen room at the University of North Texas Engineering Technology Building in Denton, Texas. Analysis of the data found no differences exist between the radio frequency transmissiveness of these products at broadband personal communication service frequencies. However, differences in the signal do exist with regards to the angle of incidence between the material and the transmitting antenna.
Date: December 2002
Creator: Ryan, Patrick L.
System: The UNT Digital Library
Liquid Nitrogen Propulsion Systems for Automotive Applications: Calculation of Mechanical Efficiency of a Dual, Double-acting Piston Propulsion System (open access)

Liquid Nitrogen Propulsion Systems for Automotive Applications: Calculation of Mechanical Efficiency of a Dual, Double-acting Piston Propulsion System

A dual, double-acting propulsion system is analyzed to determine how efficiently it can convert the potential energy available from liquid nitrogen into useful work. The two double-acting pistons (high- and low-pressure) were analyzed by using a Matlab-Simulink computer simulation to determine their respective mechanical efficiencies. The flow circuit for the entire system was analyzed by using flow circuit analysis software to determine pressure losses throughout the system at the required mass flow rates. The results of the piston simulation indicate that the two pistons analyzed are very efficient at transferring energy into useful work. The flow circuit analysis shows that the system can adequately maintain the mass flow rate requirements of the pistons but also identifies components that have a significant impact on the performance of the system. The results of the analysis indicate that the nitrogen propulsion system meets the intended goals of its designers.
Date: May 2008
Creator: North, Thomas B.
System: The UNT Digital Library
Flow Accelerated Corrosion Experience at Comanche Peak Steam Electric Station (open access)

Flow Accelerated Corrosion Experience at Comanche Peak Steam Electric Station

Flow accelerated corrosion (FAC) is a major concern in the power industry as it causes thinning of the pipes by the dissolution of the passive oxide layer formed on the pipe surface. Present research deals with comparing the protection offered by the magnetite (Fe3O4) versus maghemite (γ-Fe2O3) phases thickness loss measurements. Fourier transform infrared spectroscopy (FTIR) is used in distinguishing these two elusive phases of iron oxides. Representative pipes are collected from high pressure steam extraction line of the secondary cycle of unit 2 of Comanche Peak Steam Electric Station (CPSES). Environmental scanning electron microscopy (ESEM) is used for morphological analysis. FTIR and X-ray diffraction (XRD) are used for phase analysis. Morphological analysis showed the presence of porous oxide surfaces with octahedral crystals, scallops and "chimney" like vents. FTIR revealed the predominance of maghemite at the most of the pipe sections. Results of thickness measurements indicate severe thickness loss at the bend areas (extrados) of the pipes.
Date: May 2008
Creator: Nakka, Ravi Kumar
System: The UNT Digital Library
Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum. (open access)

Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum.

Pulse oximeters are used in operating rooms and recovery rooms as a monitoring device for oxygen in the respiratory system of the patient. The advantage of pulse oximeters over other methods of oxygen monitoring is that they are easy to use and they are non-invasive, which means it is not necessary break the skin to extract blood for information to be obtained. The standard for the measurement of partial pressure of CO2 and O2 is an arterial blood gas analysis (ABG). However routine monitoring using this method on a continuous basis is impractical since it is slow, painful and invasive. Measuring carbon dioxide is critical to preventing ailments such as carbon dioxide poisoning or hypoxia. The problem is, currently there is no known effective non-invasive method for accurately measuring carbon dioxide in the body to properly assess the adequacy of ventilation. The objective of this study was to experimentally use spectroscopy in the visible spectrum and the principles of operation of a pulse oximeter to incorporate a method of non-invasive real-time carbon dioxide monitoring that is as quick and easy to use.
Date: December 2007
Creator: Marks, Damian
System: The UNT Digital Library
A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices (open access)

A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices

The objective of this research is to investigate the use of laser direct writing to micro-pattern low loss passive optical channel waveguide devices using a new hybrid organic/inorganic polymer. Review of literature shows previous methods of optical waveguide device patterning as well as application of other non-polymer materials. System setup and design of the waveguide components are discussed. Results show that laser direct writing of the hybrid polymer produce single mode interconnects with a loss of less 1dB/cm.
Date: May 2008
Creator: Borden, Bradley W.
System: The UNT Digital Library
A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications (open access)

A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications

This thesis presents a novel ZnO-hydrogel based fluorescent colloidal semiconductor nanomaterial system for potential bio-medical applications such as bio-imaging, cancer detection and therapy. The preparation of ZnO nanoparticles and their surface modification to make a biocompatible material with enhanced optical properties is discussed. High quality ZnO nanoparticles with UV band edge emission are prepared using gas evaporation method. Semiconductor materials including ZnO are insoluble in water. Since biological applications require water soluble nanomaterials, ZnO nanoparticles are first dispersed in water by ball milling method, and their aqueous stability and fluorescence properties are enhanced by incorporating them in bio-compatible poly N-isopropylacrylamide (PNIPAM) based hydrogel polymer matrix. The optical properties of ZnO-hydrogel colloidal dispersion versus ZnO-Water dispersion were analyzed. The optical characterization using photoluminescence spectroscopy indicates approximately 10 times enhancement of fluorescence in ZnO-hydrogel colloidal system compared to ZnO-water system. Ultrafast time resolved measurement demonstrates dominant exciton recombination process in ZnO-hydrogel system compared to ZnO-water system, confirming the surface modification of ZnO nanoparticles by hydrogel polymer matrix. The surface modification of ZnO nanoparticles by hydrogel induce more scattering centers per unit area of cross-section, and hence increase the luminescence from the ZnO-gel samples due to multiple path excitations. Furthermore, surface modification of …
Date: May 2009
Creator: John, Sween
System: The UNT Digital Library